
-
Previous Article
Null controllability for semilinear heat equation with dynamic boundary conditions
- DCDS-S Home
- This Issue
-
Next Article
Determination of the initial density in nonlocal diffusion from final time measurements
On the global controllability of the 1-D Boussinesq equation
1. | Ecole Nationale d'Ingénieurs de Tunis, Université de Tunis El-Manar & Laboratoire d'Ingénierie, Mathématique (LIM), Ecole Polytechnique de Tunisie, Université de Carthage, Tunisia |
2. | Faculté des Sciences de Bizerte, Université de Carthage & UR Analysis and Control of PDEs, UR 13ES64, University of Monastir, Tunisia |
We prove in this paper the global approximate controllability of the 1-D Boussinesq equation-subjected to internal control and free boundary conditions-on a bounded domain. The key ingredients of the proof relies Coron's return method for the exact global controllability of the nonlinear control system $ y_{tt}+(y^2)_{xx} = u(t) $, combined with some priori estimates for nonlinear weak-hyperbolic systems defined respectively in Gevrey class of functions, and in Sobolev spaces.
References:
[1] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[2] |
A. Arosio and S. Spagnolo,
Global existance for abstract evolution equations of weakly hyperbolic type, J. Math. Pures Appl., 65 (1986), 263-305.
|
[3] |
K. Beauchard, Contribution à L'étude de la Contrôlabilité et de la Stabilisation de L'équation de Schrödinger, PhD thesis, Université d'Orsay, 2005. |
[4] |
J. L. Bona and R. L. Sachs,
Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.
doi: 10.1007/BF01218475. |
[5] |
E. Cerpa and E. Crépeau,
On the controllability of the improved Boussinesq equation, SIAM J. Control Optim., 56 (2018), 3035-3049.
doi: 10.1137/16M108923X. |
[6] |
E. Cerpa and I. Rivas,
On the controllability of the Boussinesq equation in low regularity, Journal of Evolution Equations, 18 (2018), 1501-1519.
doi: 10.1007/s00028-018-0450-6. |
[7] |
M. Chapouly, Contrôlabilité D'équations Issues de la Mécanique des Fluides, Thèse de doctorat, Université Paris-Sud-Orsay, 2009. |
[8] |
M. Chapouly,
Global controllability of nonviscous and viscous Burgers-type equations, SIAM J. Control Optim., 48 (2009), 1567-1599.
doi: 10.1137/070685749. |
[9] |
H. R. Clark,
Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. Math. Sci., 21 (1998), 533-548.
doi: 10.1155/S016117129800074X. |
[10] |
F. Colombini, E. De Giorgio and S. Spagnolo,
Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Della Scuola Norm. Sup. Pisa Cl. Sci., 6 (1979), 511-559.
|
[11] |
F. Colombini, D. Del Santo and T. Kinoshita,
Gevrey-well-posedness for weakly hyperbolic operators with non-regular coefficients, J. Math. Pures Appl., 81 (2002), 641-654.
doi: 10.1016/S0021-7824(01)01252-1. |
[12] |
F. Colombini, E. Jannelli and S. Spagnolo,
Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Della Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 291-312.
|
[13] |
F. Colombini and S. Spagnolo,
An example of a weakly hyperbolic Cauchy problem not well posed in ${C^{\infty}}$, Acta Math., 148 (1982), 243-253.
doi: 10.1007/BF02392730. |
[14] |
F. Colombini and S. Spagnolo,
Some examples of hyperbolic equation without local solvability, Ann. Sci. École Norm. Sup., 22 (1989), 109-125.
doi: 10.24033/asens.1578. |
[15] |
J.-M. Coron,
Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C.R. Acad. Sci. Paris, 317 (1993), 271-276.
|
[16] |
J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.
doi: 10.1090/surv/136. |
[17] |
J.-M. Coron,
On the controllability of nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians, India, World Scientific Publishing Co Pte Ltd, 2010,Vol. Ⅰ: Plenary Lectures and Ceremonies, 1 (2010), 238-264.
|
[18] |
J.-M. Coron, J. I. Diaz, A. Drici and T. Mingazzin,
Global null controllability of the 1-dimensionnal nonlinear slow diffusion equation, Chinese Ann. Math. Ser. B, 34 (2013), 333-344.
doi: 10.1007/s11401-013-0774-z. |
[19] |
J.-M. Coron and P. Lissy,
Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.
doi: 10.1007/s00222-014-0512-5. |
[20] |
E. Crépeau, Contrôlabilité Exacte D'équations Dispersives Issues de la Mécaniques, Thèse de Doctorat, Université Paris-Sud-Orsay, 2002. |
[21] |
E. Crépeau,
Exact controllability of the Boussinesq equation on a bounded domain, Differential and Integral Equations, 16 (2003), 303-326.
|
[22] | |
[23] |
P. D'Ancona and M. Reissig,
New trends in the theory of nonlinear weakly hyperbolic equation of second order, Nonlinear Anal., 30 (1997), 2507-2515.
doi: 10.1016/S0362-546X(96)00354-9. |
[24] |
W. Dörfler, H. Gerner and R. Schnaubelt,
Local well-posedness of a quasilinear wave equation, Appl. Anal., 95 (2016), 2110-2123.
doi: 10.1080/00036811.2015.1089236. |
[25] |
P. Gao,
Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation, Evol. Equ. Control Theory, 9 (2020), 181-191.
doi: 10.3934/eect.2020002. |
[26] |
O. Glass,
On the controllability of the Vlasov-Poisson system, J. Differential Equations, 195 (2003), 332-379.
doi: 10.1016/S0022-0396(03)00066-4. |
[27] |
H. Hermes,
Large-time local controllability via homogeneous approximations, SIAM J. Contol And Optimization, 34 (1996), 1291-1299.
doi: 10.1137/S0363012994268059. |
[28] |
F. John,
Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions, Comm. Pure and Appl. Math., 29 (1976), 649-682.
doi: 10.1002/cpa.3160290608. |
[29] |
K. Kajitani,
Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460.
doi: 10.14492/hokmj/1525852966. |
[30] |
M. Kawski,
High-order small-time local controllability, Nonlinear Controllability and Optimal Control, Marcel Dekker, Monogr. Textbooks Pure Appl. Math., Dekker, New York, 133 (1990), 431-467.
|
[31] |
S. Klainerman,
Global existence for nonlinear wave equations, Comm. Pure and Appl. Math., 33 (1980), 43-101.
doi: 10.1002/cpa.3160330104. |
[32] |
H. Li, Q. Lü and X. Zhang,
Recent progress on controllability / observability for systems governed by partial differential equations, L. Syst. Sci. Complex, 23 (2010), 527-545.
doi: 10.1007/s11424-010-0144-9. |
[33] |
S. Li, M. Chen and B. Zhang,
Controllability and stabilizability of a higher order wave equation on a periodic domain, SIAM J. Control Optim., 58 (2020), 1121-1143.
doi: 10.1137/19M1240472. |
[34] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[35] |
M. Reissig and K. Yagdjian,
Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Math. Nachr., 178 (1996), 285-307.
doi: 10.1002/mana.19961780114. |
[36] |
L. Rosier,
Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[37] |
D. L. Russell and Y. B. Zhang,
Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.
doi: 10.1090/S0002-9947-96-01672-8. |
[38] |
J. Wu, X. Zhu and S. Chai,
Controllability for one-dimensional nonlinear wave equations with degenarte damping, Systems and Control Letters, 100 (2017), 66-72.
doi: 10.1016/j.sysconle.2016.12.007. |
[39] |
B.-Y. Zhang,
Exact controllability of the generalized Boussinesq equation, Control and Estimation of Distributed Parameter Systems, Internat. Ser. Numer. Math., Birkhäuser, Basel, 126 (1988), 297-311.
|
[40] |
X. Zhang,
Remarks on the controllability of some quasilinear equations, Some Problems on Nonlinear Hyperbolic Equations and Applications, Ser. Contemp. Appl. Math. CAM, Higher Ed. Press, Beijing, 15 (2010), 437-452.
doi: 10.1142/9789814322898_0020. |
[41] |
Y. Zhou and Z. Lei,
Local exact boundary controllability for nonlinear wave equations, SIAM J. Control. Optim., 46 (2007), 1022-1051.
doi: 10.1137/060650222. |
[42] |
E. Zuazua,
Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 10 (1993), 109-129.
doi: 10.1016/s0294-1449(16)30221-9. |
show all references
References:
[1] |
H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[2] |
A. Arosio and S. Spagnolo,
Global existance for abstract evolution equations of weakly hyperbolic type, J. Math. Pures Appl., 65 (1986), 263-305.
|
[3] |
K. Beauchard, Contribution à L'étude de la Contrôlabilité et de la Stabilisation de L'équation de Schrödinger, PhD thesis, Université d'Orsay, 2005. |
[4] |
J. L. Bona and R. L. Sachs,
Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.
doi: 10.1007/BF01218475. |
[5] |
E. Cerpa and E. Crépeau,
On the controllability of the improved Boussinesq equation, SIAM J. Control Optim., 56 (2018), 3035-3049.
doi: 10.1137/16M108923X. |
[6] |
E. Cerpa and I. Rivas,
On the controllability of the Boussinesq equation in low regularity, Journal of Evolution Equations, 18 (2018), 1501-1519.
doi: 10.1007/s00028-018-0450-6. |
[7] |
M. Chapouly, Contrôlabilité D'équations Issues de la Mécanique des Fluides, Thèse de doctorat, Université Paris-Sud-Orsay, 2009. |
[8] |
M. Chapouly,
Global controllability of nonviscous and viscous Burgers-type equations, SIAM J. Control Optim., 48 (2009), 1567-1599.
doi: 10.1137/070685749. |
[9] |
H. R. Clark,
Global classical solutions to the Cauchy problem for a nonlinear wave equation, Internat. J. Math. Math. Sci., 21 (1998), 533-548.
doi: 10.1155/S016117129800074X. |
[10] |
F. Colombini, E. De Giorgio and S. Spagnolo,
Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Della Scuola Norm. Sup. Pisa Cl. Sci., 6 (1979), 511-559.
|
[11] |
F. Colombini, D. Del Santo and T. Kinoshita,
Gevrey-well-posedness for weakly hyperbolic operators with non-regular coefficients, J. Math. Pures Appl., 81 (2002), 641-654.
doi: 10.1016/S0021-7824(01)01252-1. |
[12] |
F. Colombini, E. Jannelli and S. Spagnolo,
Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Della Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 291-312.
|
[13] |
F. Colombini and S. Spagnolo,
An example of a weakly hyperbolic Cauchy problem not well posed in ${C^{\infty}}$, Acta Math., 148 (1982), 243-253.
doi: 10.1007/BF02392730. |
[14] |
F. Colombini and S. Spagnolo,
Some examples of hyperbolic equation without local solvability, Ann. Sci. École Norm. Sup., 22 (1989), 109-125.
doi: 10.24033/asens.1578. |
[15] |
J.-M. Coron,
Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels, C.R. Acad. Sci. Paris, 317 (1993), 271-276.
|
[16] |
J.-M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs, 136. American Mathematical Society, Providence, RI, 2007.
doi: 10.1090/surv/136. |
[17] |
J.-M. Coron,
On the controllability of nonlinear partial differential equations, Proceedings of the International Congress of Mathematicians, India, World Scientific Publishing Co Pte Ltd, 2010,Vol. Ⅰ: Plenary Lectures and Ceremonies, 1 (2010), 238-264.
|
[18] |
J.-M. Coron, J. I. Diaz, A. Drici and T. Mingazzin,
Global null controllability of the 1-dimensionnal nonlinear slow diffusion equation, Chinese Ann. Math. Ser. B, 34 (2013), 333-344.
doi: 10.1007/s11401-013-0774-z. |
[19] |
J.-M. Coron and P. Lissy,
Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components, Invent. Math., 198 (2014), 833-880.
doi: 10.1007/s00222-014-0512-5. |
[20] |
E. Crépeau, Contrôlabilité Exacte D'équations Dispersives Issues de la Mécaniques, Thèse de Doctorat, Université Paris-Sud-Orsay, 2002. |
[21] |
E. Crépeau,
Exact controllability of the Boussinesq equation on a bounded domain, Differential and Integral Equations, 16 (2003), 303-326.
|
[22] | |
[23] |
P. D'Ancona and M. Reissig,
New trends in the theory of nonlinear weakly hyperbolic equation of second order, Nonlinear Anal., 30 (1997), 2507-2515.
doi: 10.1016/S0362-546X(96)00354-9. |
[24] |
W. Dörfler, H. Gerner and R. Schnaubelt,
Local well-posedness of a quasilinear wave equation, Appl. Anal., 95 (2016), 2110-2123.
doi: 10.1080/00036811.2015.1089236. |
[25] |
P. Gao,
Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation, Evol. Equ. Control Theory, 9 (2020), 181-191.
doi: 10.3934/eect.2020002. |
[26] |
O. Glass,
On the controllability of the Vlasov-Poisson system, J. Differential Equations, 195 (2003), 332-379.
doi: 10.1016/S0022-0396(03)00066-4. |
[27] |
H. Hermes,
Large-time local controllability via homogeneous approximations, SIAM J. Contol And Optimization, 34 (1996), 1291-1299.
doi: 10.1137/S0363012994268059. |
[28] |
F. John,
Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions, Comm. Pure and Appl. Math., 29 (1976), 649-682.
doi: 10.1002/cpa.3160290608. |
[29] |
K. Kajitani,
Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460.
doi: 10.14492/hokmj/1525852966. |
[30] |
M. Kawski,
High-order small-time local controllability, Nonlinear Controllability and Optimal Control, Marcel Dekker, Monogr. Textbooks Pure Appl. Math., Dekker, New York, 133 (1990), 431-467.
|
[31] |
S. Klainerman,
Global existence for nonlinear wave equations, Comm. Pure and Appl. Math., 33 (1980), 43-101.
doi: 10.1002/cpa.3160330104. |
[32] |
H. Li, Q. Lü and X. Zhang,
Recent progress on controllability / observability for systems governed by partial differential equations, L. Syst. Sci. Complex, 23 (2010), 527-545.
doi: 10.1007/s11424-010-0144-9. |
[33] |
S. Li, M. Chen and B. Zhang,
Controllability and stabilizability of a higher order wave equation on a periodic domain, SIAM J. Control Optim., 58 (2020), 1121-1143.
doi: 10.1137/19M1240472. |
[34] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[35] |
M. Reissig and K. Yagdjian,
Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Math. Nachr., 178 (1996), 285-307.
doi: 10.1002/mana.19961780114. |
[36] |
L. Rosier,
Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[37] |
D. L. Russell and Y. B. Zhang,
Exact controllability and stabilizability of the Korteweg-de Vries equation, Trans. Amer. Math. Soc., 348 (1996), 3643-3672.
doi: 10.1090/S0002-9947-96-01672-8. |
[38] |
J. Wu, X. Zhu and S. Chai,
Controllability for one-dimensional nonlinear wave equations with degenarte damping, Systems and Control Letters, 100 (2017), 66-72.
doi: 10.1016/j.sysconle.2016.12.007. |
[39] |
B.-Y. Zhang,
Exact controllability of the generalized Boussinesq equation, Control and Estimation of Distributed Parameter Systems, Internat. Ser. Numer. Math., Birkhäuser, Basel, 126 (1988), 297-311.
|
[40] |
X. Zhang,
Remarks on the controllability of some quasilinear equations, Some Problems on Nonlinear Hyperbolic Equations and Applications, Ser. Contemp. Appl. Math. CAM, Higher Ed. Press, Beijing, 15 (2010), 437-452.
doi: 10.1142/9789814322898_0020. |
[41] |
Y. Zhou and Z. Lei,
Local exact boundary controllability for nonlinear wave equations, SIAM J. Control. Optim., 46 (2007), 1022-1051.
doi: 10.1137/060650222. |
[42] |
E. Zuazua,
Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 10 (1993), 109-129.
doi: 10.1016/s0294-1449(16)30221-9. |



[1] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1075-1090. doi: 10.3934/dcdsb.2021081 |
[2] |
Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020 |
[3] |
Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311 |
[4] |
Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 |
[5] |
Yassine El Gantouh, Said Hadd, Abdelaziz Rhandi. Approximate controllability of network systems. Evolution Equations and Control Theory, 2021, 10 (4) : 749-766. doi: 10.3934/eect.2020091 |
[6] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[7] |
Salah-Eddine Chorfi, Ghita El Guermai, Lahcen Maniar, Walid Zouhair. Impulse null approximate controllability for heat equation with dynamic boundary conditions. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022026 |
[8] |
Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455 |
[9] |
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 |
[10] |
Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations and Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039 |
[11] |
Xiangqing Zhao, Bing-Yu Zhang. Global controllability and stabilizability of Kawahara equation on a periodic domain. Mathematical Control and Related Fields, 2015, 5 (2) : 335-358. doi: 10.3934/mcrf.2015.5.335 |
[12] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[13] |
Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations and Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741 |
[14] |
Nicolás Carreño. Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain. Mathematical Control and Related Fields, 2012, 2 (4) : 361-382. doi: 10.3934/mcrf.2012.2.361 |
[15] |
Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325 |
[16] |
Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations and Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1 |
[17] |
Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719 |
[18] |
Guillaume Olive. Boundary approximate controllability of some linear parabolic systems. Evolution Equations and Control Theory, 2014, 3 (1) : 167-189. doi: 10.3934/eect.2014.3.167 |
[19] |
Moncef Aouadi, Taoufik Moulahi. Approximate controllability of abstract nonsimple thermoelastic problem. Evolution Equations and Control Theory, 2015, 4 (4) : 373-389. doi: 10.3934/eect.2015.4.373 |
[20] |
Hugo Leiva, Jahnett Uzcategui. Approximate controllability of discrete semilinear systems and applications. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1803-1812. doi: 10.3934/dcdsb.2016023 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]