-
Previous Article
Well-posedness and optimal control for a Cahn–Hilliard–Oono system with control in the mass term
- DCDS-S Home
- This Issue
-
Next Article
Motion of vortices for the extrinsic Ginzburg-Landau flow for vector fields on surfaces
A 3D isothermal model for nematic liquid crystals with delay terms
1. | Departmento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain |
2. | Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy |
3. | Istituto di Matematica Applicata e Tecnologie Informatiche, CNR, Via Ferrata 1, 27100 Pavia, Italy |
In this paper we consider a model describing the evolution of a nematic liquid crystal flow with delay external forces. We analyze the evolution of the velocity field $ {\boldsymbol u} $ which is ruled by the 3D incompressible Navier-Stokes system containing a delay term and with a stress tensor expressing the coupling between the transport and the induced terms. The dynamics of the director field $ \boldsymbol{d} $ is described by a modified Allen-Cahn equation with a suitable penalization of the physical constraint $ | \boldsymbol{d}| = 1 $. We prove the existence of global in time weak solutions under appropriate assumptions, which in some cases requires the delay term to be small with respect to the viscosity parameter.
References:
[1] |
T. Caraballo and J. Real,
Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[2] |
C. Cavaterra and E. Rocca,
On a 3D isothermal model for nematic liquid crystals accounting for stretching terms, Z. Angew. Math. Phys., 64 (2013), 69-82.
doi: 10.1007/s00033-012-0219-7. |
[3] |
B. Climent-Ezquerra, F. Guillén-González and M. A. Rodríguez-Bellido,
Stability for nematic liquid crystals with stretching terms, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2937-2942.
doi: 10.1142/S0218127410027477. |
[4] |
D. Coutand and S. Shkoller,
Well posedness of the full Ericksen-Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris. Sér. I, 333 (2001), 919-924.
doi: 10.1016/S0764-4442(01)02161-9. |
[5] |
J. L. Ericksen,
Equilibrium theory of liquid crystals, Advances in Liquid Crystals, 2 (1976), 233-398.
doi: 10.1016/B978-0-12-025002-8.50012-9. |
[6] |
E. Feireisl, M. Frémond, E. Rocca and G. Schimperna,
A new approach to non-isothermal models for nematic liquid crystals, Arch. Rational Mech. Anal., 205 (2012), 651-672.
doi: 10.1007/s00205-012-0517-4. |
[7] |
E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8843-0. |
[8] |
J. García-Luengo, P. Marín-Rubio and J. Real,
Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.
doi: 10.1515/ans-2013-0205. |
[9] |
M. Grasselli and H. Wu,
Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow, Z. Angew. Math. Phys., 62 (2011), 979-992.
doi: 10.1007/s00033-011-0157-9. |
[10] |
G. B. Jeffery,
The motion of ellipsoidal particles immersed in a viscous fluid, Roy. Soc. Proc., 102 (1922), 161-179.
|
[11] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, Vol. 2 Gordon and Breach Science Publishers, New York-London-Paris, 1969. |
[12] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[13] |
F. M. Leslie,
Theory of flow phenomena in liquid crystals, Advances in Liquid Crystals, 4 (1978), 1-81.
doi: 10.1016/B978-0-12-025004-2.50008-9. |
[14] |
F.-H. Lin and C. Liu,
Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[15] |
F.-H. Lin and C. Liu,
Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14 (2001), 289-330.
|
[16] |
J.-L. Lions,
Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France, 93 (1965), 155-175.
|
[17] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, Gauthier-Villars, Paris, 1969. |
[18] |
C. Liu and J. Shen,
On liquid crystal flows with free-slip boundary conditions, Discrete Contin. Dynam. Systems, 7 (2001), 307-318.
doi: 10.3934/dcds.2001.7.307. |
[19] |
L. Liu, T. Caraballo and P. Marín-Rubio,
Stability results for 2D Navier–Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.
doi: 10.1016/j.jde.2018.07.008. |
[20] |
J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner Texts in Mathematics, 52. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983. |
[21] |
L. Nirenberg,
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.
|
[22] |
H. Petzeltová, E. Rocca and G. Schimperna,
On the long-time behavior of some mathematical models for nematic liquid crystals, Calc. Var. Partial Differential Equations, 46 (2013), 623-639.
doi: 10.1007/s00526-012-0496-1. |
[23] |
A. Segatti and H. Wu,
Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows, Siam J. Math. Anal., 43 (2011), 2445-2481.
doi: 10.1137/100813427. |
[24] |
S. Shkoller,
Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Comm. Part. Diff. Eq., 27 (2002), 1103-1137.
doi: 10.1081/PDE-120004895. |
[25] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[26] |
H. Sun and C. Liu,
On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dynam. Systems, 23 (2009), 455-475.
doi: 10.3934/dcds.2009.23.455. |
[27] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.
doi: 10.1090/chel/343. |
[28] |
H. Wu, X. Xu and C. Liu,
Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, Calc. Var. Partial Differential Equations, 45 (2012), 319-345.
doi: 10.1007/s00526-011-0460-5. |
[29] |
J. H. Xu, T. Caraballo and J. Valero, Asymptotic behavior of nonlocal partial differential equations with long time memory, Discrete and Continuous Dynamical Systems, Series S, (2022). |
[30] |
J. H. Xu, Z. Zhang and T. Caraballo,
Non-autonomous nonlocal partial differential equations with delay and memory, J. Differential Equations, 270 (2021), 505-546.
doi: 10.1016/j.jde.2020.07.037. |
show all references
References:
[1] |
T. Caraballo and J. Real,
Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[2] |
C. Cavaterra and E. Rocca,
On a 3D isothermal model for nematic liquid crystals accounting for stretching terms, Z. Angew. Math. Phys., 64 (2013), 69-82.
doi: 10.1007/s00033-012-0219-7. |
[3] |
B. Climent-Ezquerra, F. Guillén-González and M. A. Rodríguez-Bellido,
Stability for nematic liquid crystals with stretching terms, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2937-2942.
doi: 10.1142/S0218127410027477. |
[4] |
D. Coutand and S. Shkoller,
Well posedness of the full Ericksen-Leslie model of nematic liquid crystals, C. R. Acad. Sci. Paris. Sér. I, 333 (2001), 919-924.
doi: 10.1016/S0764-4442(01)02161-9. |
[5] |
J. L. Ericksen,
Equilibrium theory of liquid crystals, Advances in Liquid Crystals, 2 (1976), 233-398.
doi: 10.1016/B978-0-12-025002-8.50012-9. |
[6] |
E. Feireisl, M. Frémond, E. Rocca and G. Schimperna,
A new approach to non-isothermal models for nematic liquid crystals, Arch. Rational Mech. Anal., 205 (2012), 651-672.
doi: 10.1007/s00205-012-0517-4. |
[7] |
E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8843-0. |
[8] |
J. García-Luengo, P. Marín-Rubio and J. Real,
Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013), 331-357.
doi: 10.1515/ans-2013-0205. |
[9] |
M. Grasselli and H. Wu,
Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow, Z. Angew. Math. Phys., 62 (2011), 979-992.
doi: 10.1007/s00033-011-0157-9. |
[10] |
G. B. Jeffery,
The motion of ellipsoidal particles immersed in a viscous fluid, Roy. Soc. Proc., 102 (1922), 161-179.
|
[11] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Mathematics and its Applications, Vol. 2 Gordon and Breach Science Publishers, New York-London-Paris, 1969. |
[12] |
J. Leray,
Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[13] |
F. M. Leslie,
Theory of flow phenomena in liquid crystals, Advances in Liquid Crystals, 4 (1978), 1-81.
doi: 10.1016/B978-0-12-025004-2.50008-9. |
[14] |
F.-H. Lin and C. Liu,
Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.
doi: 10.1002/cpa.3160480503. |
[15] |
F.-H. Lin and C. Liu,
Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14 (2001), 289-330.
|
[16] |
J.-L. Lions,
Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France, 93 (1965), 155-175.
|
[17] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod, Paris, Gauthier-Villars, Paris, 1969. |
[18] |
C. Liu and J. Shen,
On liquid crystal flows with free-slip boundary conditions, Discrete Contin. Dynam. Systems, 7 (2001), 307-318.
doi: 10.3934/dcds.2001.7.307. |
[19] |
L. Liu, T. Caraballo and P. Marín-Rubio,
Stability results for 2D Navier–Stokes equations with unbounded delay, J. Differential Equations, 265 (2018), 5685-5708.
doi: 10.1016/j.jde.2018.07.008. |
[20] |
J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner Texts in Mathematics, 52. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1983. |
[21] |
L. Nirenberg,
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.
|
[22] |
H. Petzeltová, E. Rocca and G. Schimperna,
On the long-time behavior of some mathematical models for nematic liquid crystals, Calc. Var. Partial Differential Equations, 46 (2013), 623-639.
doi: 10.1007/s00526-012-0496-1. |
[23] |
A. Segatti and H. Wu,
Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows, Siam J. Math. Anal., 43 (2011), 2445-2481.
doi: 10.1137/100813427. |
[24] |
S. Shkoller,
Well-posedness and global attractors for liquid crystals on Riemannian manifolds, Comm. Part. Diff. Eq., 27 (2002), 1103-1137.
doi: 10.1081/PDE-120004895. |
[25] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[26] |
H. Sun and C. Liu,
On energetic variational approaches in modeling the nematic liquid crystal flows, Discrete Contin. Dynam. Systems, 23 (2009), 455-475.
doi: 10.3934/dcds.2009.23.455. |
[27] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.
doi: 10.1090/chel/343. |
[28] |
H. Wu, X. Xu and C. Liu,
Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, Calc. Var. Partial Differential Equations, 45 (2012), 319-345.
doi: 10.1007/s00526-011-0460-5. |
[29] |
J. H. Xu, T. Caraballo and J. Valero, Asymptotic behavior of nonlocal partial differential equations with long time memory, Discrete and Continuous Dynamical Systems, Series S, (2022). |
[30] |
J. H. Xu, Z. Zhang and T. Caraballo,
Non-autonomous nonlocal partial differential equations with delay and memory, J. Differential Equations, 270 (2021), 505-546.
doi: 10.1016/j.jde.2020.07.037. |
[1] |
Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115 |
[2] |
Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255 |
[3] |
Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 |
[4] |
Sandro M. Guzzo, Gabriela Planas. On a class of three dimensional Navier-Stokes equations with bounded delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 225-238. doi: 10.3934/dcdsb.2011.16.225 |
[5] |
Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312 |
[6] |
Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681 |
[7] |
Fan Wu. Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor. Evolution Equations and Control Theory, 2021, 10 (3) : 511-518. doi: 10.3934/eect.2020078 |
[8] |
Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039 |
[9] |
Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008 |
[10] |
Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873 |
[11] |
Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471 |
[12] |
Joelma Azevedo, Claudio Cuevas, Jarbas Dantas, Clessius Silva. On the fractional chemotaxis Navier-Stokes system in the critical spaces. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022088 |
[13] |
Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445 |
[14] |
Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757 |
[15] |
Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045 |
[16] |
Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1 |
[17] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[18] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[19] |
A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289 |
[20] |
Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]