In this paper, we consider same systems of two coupled equations (wave-wave, Schrödinger-Schrödinger) in a bounded domain. Only one of the two equations is directly damped by a localized damping term (indirect stabilization). Under geometric control conditions on both coupling and damping regions (internal or boundary), we establish the energy decay rate by means of a suitable resolvent estimate. The numerical contribution is interpreted to confirm the theoretical result of a wave-wave system.
Citation: |
[1] | F. Alabau, Stabilisation frontière indirecte de systéme, C. R. Acad. Sci. Paris Sér. I Math., 328 (1999), 1015-1020. doi: 10.1016/S0764-4442(99)80316-4. |
[2] | F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilisation of weakly coupled evolution equations, Journal of Evolution Equation, 2 (2002), 127-150. doi: 10.1007/s00028-002-8083-0. |
[3] | F. Alabau-Boussouira, R. Brockett, O. Glass, J. le Rousseau and E. Zuazua, Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048. Fondazione CIME/CIME Foundation Subseries, Springer, Heidelberg, Fondazione C.I.M.E., Florence, 2012. doi: 10.1007/978-3-642-27893-8. |
[4] | F. Alabau-Boussouira, Z. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749. doi: 10.1051/cocv/2016011. |
[5] | L. Aloui and M. Daoulatli, Stabilization of two coupled wave equations on a compact manifold with boundary, J. Math. Anal. Appl., 436 (2016), 944-969. doi: 10.1016/j.jmaa.2015.12.014. |
[6] | F. Ammar-Khodja and A. Bader, Stability of systems of one dimensional wave equations by internal or boundary control force, SIAM J. Control Optim., 39 (2001), 127. |
[7] | C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055. |
[8] | M. Bassam, D. Mercier, S. Nicaise and A. Wehbe, Stabilisation frontière indirecte du système de Timoshenko, C. R. Math. Acad. Sci. Paris, 349 (2011), 379-384. doi: 10.1016/j.crma.2011.03.011. |
[9] | A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Mathematische Annalen, 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0. |
[10] | L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1. |
[11] | T.-E. Ghoul, M. Khenissi and B. Said-Houari, On the stability of the Bresse system with frictional damping, J. Math. Anal. Appl., 455 (2017), 1870-1898. doi: 10.1016/j.jmaa.2017.04.027. |
[12] | R. Guglielmi, Indirect stabilization of hyperbolic systems through resolvent estimates, Evol. Equ. Control Theory, 6 (2017), 59-75. doi: 10.3934/eect.2017004. |
[13] | F. L. Huang, Strong asymptotic stability of linear dynamical systems in Banach spaces, Journal of Differential Equations, 104 (1993), 307-324. doi: 10.1006/jdeq.1993.1074. |
[14] | B. Jacop and H. Zwart, On the Hautus test for exponentially stable ${\rm{C}}_{0}$-groups, SIAM J. Control Optim., 48 (2009), 1275-1288. doi: 10.1137/080724733. |
[15] | B. Kapitonov, Stabilization and simultaneous boundary controllability for a class of evolution systems, Comput. Appl. Math., 17 (1998), 149-160. |
[16] | B. V. Kapitonov, Uniform stabilization and simultaneous exact boundary controllability for a pair of hyperbolic systems, Siberian Math. J., 35 (1994), 722-734. doi: 10.1007/BF02106615. |
[17] | B. V. Kapitonov, Uniform stabilization and exact controllability for a class of coupled hyperbolic systems, Mat. Apl. Comput., 15 (1996), 199-212. |
[18] | C. Kassema, A. Mortada, L. Toufayli and A. Wehbe, Local indirect stabilization of N–d system of two coupled wave equations under geometric conditions, Comptes Rendus Mathematique, 357 (2019), 494-512. |
[19] | G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, Math. Phys. Stud., Kluwer Acad. Publ., Dordrecht, 19 (1996), 73-109. |
[20] | G. Lebeau and L. Robbiano., Stabilisation de l'équation des ondes par le bord, Duke Math. J., 86 (1997), 465-491. |
[21] | K. Liu, Locally distributed control and damping for the conservative systems, Journal on Control and Optimization, 35 (1997), 1574-1590. |
[22] | W.-J. Liu and E. Zuazua, Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback, Quarterly of Applied Mathematics, 59 (2001), 269-314. doi: 10.1090/qam/1828455. |
[23] | Z. Liu and B. Rao, Energy decay rate of the thermoelastic Bresse system, Zeitschrift für Angewandte Mathematik und Physik, 60 (2009), 54-69. |
[24] | M. Negreanu and E. Zuazua, Uniform boundary controlability of a discrete 1-D wave equation, Systems Control Lett., 48 (2003), 261-279. doi: 10.1016/S0167-6911(02)00271-2. |
[25] | A. Pazy, Semigroups of Linear Operator and applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. |
[26] | J. Prüss, On the spectrum of ${\rm{C}}_{0}$ semigroups, Transactions of the American Mathematical Society, 284 (1984), 847-857. |
[27] | D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339-354. doi: 10.1006/jmaa.1993.1071. |
[28] | L. Tebou, Energy decay estimates for some weakly coupled Euler-Bernoulli and wave equations with indirect damping mechanisms, Math. Control Relat. Fields, 2 (2012), 45-60. doi: 10.3934/mcrf.2012.2.45. |