Article Contents
Article Contents

# Convergence to equilibrium for time and space discretizations of the Cahn-Hilliard equation

• * Corresponding author: Morgan Pierre

Dedicated to Maurizio Grasselli on the occasion of his 60th birthday

• We review space and time discretizations of the Cahn-Hilliard equation which are energy stable. In many cases, we prove that a solution converges to a steady state as time goes to infinity. The proof is based on Lyapunov theory and on a Lojasiewicz type inequality. In a few cases, the convergence result is only partial and this raises some interesting questions. Numerical simulations in two and three space dimensions illustrate the theoretical results. Several perspectives are discussed.

Mathematics Subject Classification: Primary: 65M12, 65P40; Secondary: 37M05.

 Citation:

• Figure 1.  Mesh used for (88)

Figure 2.  Final value for (88) with $\theta = 0$ (left), $\theta = \pi/4$ (middle) and $\theta = \pi/2$ (right). The thickness parameter $\varepsilon$ is equal to $0.2$

Figure 3.  Final energy level vs. angle $\theta$ for (88)

Figure 4.  Time step vs. time for the 2D secant scheme

Figure 5.  Energy vs. time for the 2D secant scheme

Figure 6.  Time $t = 0.03\cdot 10^{-5}$ (left) and $t = 2.3\cdot 10^{-5}$ (right)

Figure 7.  Time $t = 40\cdot 10^{-5}$ (left) and $t = 357\cdot 10^{-5}$ (right)

Figure 8.  Time $t = 532\cdot 10^{-5}$ (left) and steady state (right). The thickness parameter $\varepsilon$ is equal to $0.04$

Figure 9.  Solution at time $t = 5e-6$ (left), $t = 6e-4$ (middle) and $t = 0.1$ (right) for $\varepsilon = 0.04$. The time step is $\tau = 10^{-6}$

Figure 10.  Solution at time $t = 5e-6$ (left), $t = 6e-4$ (middle) and $t = 0.1$ (right) for $\varepsilon = 0.04$. The time step is $\tau = 5\times 10^{-7}$

Figure 11.  Time $t = 0$ (left) and $t = 2\cdot 10^{-5}$ (right)

Figure 12.  Time $8\cdot 10^{-5}$ (left) and $t = 36\cdot 10^{-5}$ (right)

Figure 13.  Time $875\cdot 10^{-5}$ (left) and steady state (right). The thickness parameter $\varepsilon$ is equal to $0.04$

Figure 14.  Energy vs. time for 3D linear IMEX scheme

•  [1] H. Abels and M. Wilke, Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy, Nonlinear Anal., 67 (2007), 3176-3193.  doi: 10.1016/j.na.2006.10.002. [2] P.-A. Absil and K. Kurdyka, On the stable equilibrium points of gradient systems, Systems Control Lett., 55 (2006), 573-577.  doi: 10.1016/j.sysconle.2006.01.002. [3] P.-A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.  doi: 10.1137/040605266. [4] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ, Comm. Pure Appl. Math., 12 (1959), 623-727.  doi: 10.1002/cpa.3160120405. [5] G. Akrivis, Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations, SIAM J. Numer. Anal., 53 (2015), 464-484.  doi: 10.1137/140962619. [6] N. E. Alaa and M. Pierre, Convergence to equilibrium for discretized gradient-like systems with analytic features, IMA J. Numer. Anal., 33 (2013), 1291-1321.  doi: 10.1093/imanum/drs042. [7] P. F. Antonietti, L. Beirão da Veiga, S. Scacchi and M. Verani, A $C^1$ virtual element method for the Cahn-Hilliard equation with polygonal meshes, SIAM J. Numer. Anal., 54 (2016), 34-56.  doi: 10.1137/15M1008117. [8] P. F. Antonietti, B. Merlet, M. Pierre and M. Verani, Convergence to equilibrium for a second-order time semi-discretization of the Cahn-Hilliard equation, AIMS Mathematics, 1 (2016), 178-194. [9] A. C. Aristotelous, O. Karakashian and S. M. Wise, A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2211-2238.  doi: 10.3934/dcdsb.2013.18.2211. [10] H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137 (2013), 91-129.  doi: 10.1007/s10107-011-0484-9. [11] S. Badia, F. Guillén-González and J. V. Gutiérrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys., 230 (2011), 1686-1706.  doi: 10.1016/j.jcp.2010.11.033. [12] F. Bai, C. M. Elliott, A. Gardiner, A. Spence and A. M. Stuart, The viscous Cahn-Hilliard equation. Ⅰ. Computations, Nonlinearity, 8 (1995), 131-160.  doi: 10.1088/0951-7715/8/2/002. [13] J. W. Barrett and J. F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numer. Math., 72 (1995), 1-20.  doi: 10.1007/s002110050157. [14] S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, Numer. Math., 119 (2011), 409-435.  doi: 10.1007/s00211-011-0389-9. [15] P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM J. Appl. Math., 53 (1993), 990-1008.  doi: 10.1137/0153049. [16] P. Bégout, J. Bolte and M. A. Jendoubi, On damped second-order gradient systems, J. Differential Equations, 259 (2015), 3115-3143.  doi: 10.1016/j.jde.2015.04.016. [17] R. Benedetti and J.-J. Risler, Real Algebraic and Semi-Algebraic Sets, Actualités Mathématiques, Hermann, Paris, 1990. [18] M.-F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., 106 (1991), 489-539.  doi: 10.1007/BF01243922. [19] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, vol. 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03718-8. [20] C. Bolley, Solutions numériques de problèmes de bifurcation, RAIRO Anal. Numér., 14 (1980), 127-147.  doi: 10.1051/m2an/1980140201271. [21] A. Bouchriti, M. Pierre and N. E. Alaa, Gradient stability of high-order BDF methods and some applications, J. Difference Equ. Appl., 26 (2020), 74-103.  doi: 10.1080/10236198.2019.1709062. [22] A. Bouchriti, M. Pierre and N. E. Alaa, Remarks on the asymptotic behavior of scalar auxiliary variable (SAV) schemes for gradient-like flows, J. Appl. Anal. Comput., 10 (2020), 2198-2219.  doi: 10.11948/20190373. [23] M. Brachet and J.-P. Chehab, Stabilized times schemes for high accurate finite differences solutions of nonlinear parabolic equations, J. Sci. Comput., 69 (2016), 946-982.  doi: 10.1007/s10915-016-0223-8. [24] M. Brachet and J.-P. Chehab, Fast and stable schemes for phase fields models, Comput. Math. Appl., 80 (2020), 1683-1713.  doi: 10.1016/j.camwa.2020.07.015. [25] L. Bronsard and D. Hilhorst, On the slow dynamics for the Cahn-Hilliard equation in one space dimension, Proc. Roy. Soc. London Ser. A, 439 (1992), 669-682.  doi: 10.1098/rspa.1992.0176. [26] L. Bronsard and R. V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math., 43 (1990), 983-997.  doi: 10.1002/cpa.3160430804. [27] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. [28] L. Chen and J. Shen, Applications of semi-implicit Fourier-spectral method to phase field equations, Computer Physics Communications, 108 (1998), 147-158. [29] W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X, 3 (2019), 100031, 29 pp. doi: 10.1016/j.jcpx.2019.100031. [30] K. Cheng, W. Feng, C. Wang and S. M. Wise, An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation, J. Comput. Appl. Math., 362 (2019), 574-595.  doi: 10.1016/j.cam.2018.05.039. [31] L. Cherfils, S. Gatti and A. Miranville, Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 11 (2012), 2261-2290.  doi: 10.3934/cpaa.2012.11.2261. [32] L. Cherfils, A. Miranville and S. Peng, Higher-order anisotropic models in phase separation, Adv. Nonlinear Anal., 8 (2019), 278-302.  doi: 10.1515/anona-2016-0137. [33] L. Cherfils, A. Miranville, S. Peng and W. Zhang, Higher-order generalized Cahn-Hilliard equations, Electron. J. Qual. Theory Differ. Equ., (2017), Paper No. 9, 22 pp. doi: 10.14232/ejqtde.2017.1.9. [34] L. Cherfils, A. Miranville and S. Zelik, On a generalized Cahn-Hilliard equation with biological applications, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2013-2026.  doi: 10.3934/dcdsb.2014.19.2013. [35] L. Cherfils, M. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511. [36] R. Chill, On the Łojasiewicz-Simon gradient inequality, J. Funct. Anal., 201 (2003), 572-601.  doi: 10.1016/S0022-1236(02)00102-7. [37] R. Chill, E. Fašangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462.  doi: 10.1002/mana.200410431. [38] R. Chill, A. Haraux and M. A. Jendoubi, Applications of the Łojasiewicz-Simon gradient inequality to gradient-like evolution equations, Anal. Appl. (Singap.), 7 (2009), 351-372.  doi: 10.1142/S0219530509001438. [39] R. Chill and M. A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear Anal., 53 (2003), 1017-1039.  doi: 10.1016/S0362-546X(03)00037-3. [40] R. Chill and S. Mildner, The Kurdyka-Łojasiewicz-Simon inequality and stabilisation in nonsmooth infinite-dimensional gradient systems, Proc. Amer. Math. Soc., 146 (2018), 4307-4314.  doi: 10.1090/proc/14067. [41] S. M. Choo and Y. J. Lee, A discontinuous Galerkin method for the Cahn-Hilliard equation, J. Appl. Math. Comput., 18 (2005), 113-126.  doi: 10.1007/BF02936559. [42] M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.  doi: 10.1007/BF01385847. [43] Q. Du and R. A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal., 28 (1991), 1310-1322.  doi: 10.1137/0728069. [44] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, vol. 37 of RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. [45] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems (Óbidos, 1988), vol. 88 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 1989, 35–73. [46] C. M. Elliott, D. A. French and F. A. Milner, A second order splitting method for the Cahn-Hilliard equation, Numer. Math., 54 (1989), 575-590.  doi: 10.1007/BF01396363. [47] C. M. Elliott and D. A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 26 (1989), 884-903.  doi: 10.1137/0726049. [48] C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  doi: 10.1137/S0036141094267662. [49] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation, Math. Comp., 58 (1992), 603–630, S33–S36. doi: 10.2307/2153205. [50] C. M. Elliott and A. M. Stuart, The global dynamics of discrete semilinear parabolic equations, SIAM J. Numer. Anal., 30 (1993), 1622-1663.  doi: 10.1137/0730084. [51] D. J. Eyre, An unconditionally stable one-step scheme for gradient system, Unpublished. [52] X. Feng and O. A. Karakashian, Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition, Math. Comp., 76 (2007), 1093-1117.  doi: 10.1090/S0025-5718-07-01985-0. [53] X. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation, Numer. Math., 99 (2004), 47-84.  doi: 10.1007/s00211-004-0546-5. [54] P. Frankel, G. Garrigos and J. Peypouquet, Splitting methods with variable metric for Kurdyka-łojasiewicz functions and general convergence rates, J. Optim. Theory Appl., 165 (2015), 874-900.  doi: 10.1007/s10957-014-0642-3. [55] D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675-699.  doi: 10.1007/PL00005429. [56] H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems, Discrete Contin. Dyn. Syst., 15 (2006), 505-528. [57] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. [58] H. Gomez, V. M. Calo, Y. Bazilevs and T. J. R. Hughes, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197 (2008), 4333-4352.  doi: 10.1016/j.cma.2008.05.003. [59] H. Gomez and T. J. R. Hughes, Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230 (2011), 5310-5327.  doi: 10.1016/j.jcp.2011.03.033. [60] L. Goudenège, D. Martin and G. Vial, High order finite element calculations for the Cahn-Hilliard equation, J. Sci. Comput., 52 (2012), 294-321.  doi: 10.1007/s10915-011-9546-7. [61] M. S. Goudiaby, A. Diagne and L. M. Tine, Longtime behavior of a second order finite element scheme simulating the kinematic effects in liquid crystal dynamics, Commun. Pure Appl. Anal., 20 (2021), 3499-3514.  doi: 10.3934/cpaa.2021116. [62] M. Grasselli and M. Pierre, A splitting method for the Cahn-Hilliard equation with inertial term, Math. Models Methods Appl. Sci., 20 (2010), 1363-1390.  doi: 10.1142/S0218202510004635. [63] M. Grasselli and M. Pierre, Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems, Commun. Pure Appl. Anal., 11 (2012), 2393-2416.  doi: 10.3934/cpaa.2012.11.2393. [64] M. Grasselli and M. Pierre, Energy stable and convergent finite element schemes for the modified phase field crystal equation, ESAIM Math. Model. Numer. Anal., 50 (2016), 1523-1560.  doi: 10.1051/m2an/2015092. [65] M. Grasselli, G. Schimperna and S. Zelik, On the 2D Cahn-Hilliard equation with inertial term, Comm. Partial Differential Equations, 34 (2009), 137-170.  doi: 10.1080/03605300802608247. [66] M. Grasselli and H. Wu, Well-posedness and long-time behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 24 (2014), 2743-2783.  doi: 10.1142/S0218202514500365. [67] M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 351-370.  doi: 10.1017/S0308210500028079. [68] P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985. [69] F. Guillén-González and M. Samsidy Goudiaby, Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 32 (2012), 4229-4246.  doi: 10.3934/dcds.2012.32.4229. [70] F. Guillén-González and G. Tierra, On linear schemes for a Cahn-Hilliard diffuse interface model, J. Comput. Phys., 234 (2013), 140-171.  doi: 10.1016/j.jcp.2012.09.020. [71] F. Guillén-González and G. Tierra, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl., 68 (2014), 821-846.  doi: 10.1016/j.camwa.2014.07.014. [72] E. Hairer and C. Lubich, Energy-diminishing integration of gradient systems, IMA J. Numer. Anal., 34 (2014), 452-461.  doi: 10.1093/imanum/drt031. [73] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations. I, vol. 8 of Springer Series in Computational Mathematics, 2nd edition, Springer-Verlag, Berlin, 1993. [74] A. Haraux and M. A. Jendoubi, Convergence of solutions of second-order gradient-like systems with analytic nonlinearities, J. Differential Equations, 144 (1998), 313-320.  doi: 10.1006/jdeq.1997.3393. [75] A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems. Classical Methods and Recent Advances, BCAM SpringerBriefs. SpringerBriefs in Mathematics, Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. doi: 10.1007/978-3-319-23407-6. [76] P. Harder and B. Kovács, Error estimates for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., (2021). [77] F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013. [78] T. Horsin and M. A. Jendoubi, On the convergence to equilibria of a sequence defined by an implicit scheme, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3017-3025.  doi: 10.3934/dcdss.2020465. [79] T. Horsin and M. A. Jendoubi, Asymptotics for some discretizations of dynamical systems, application to second order systems with non-local nonlinearities, Commun. Pure Appl. Anal., 21 (2022), 999-1025.  doi: 10.3934/cpaa.2022007. [80] F. Huang, J. Shen and Z. Yang, A highly efficient and accurate new scalar auxiliary variable approach for gradient flows, SIAM J. Sci. Comput., 42 (2020), A2514–A2536. doi: 10.1137/19M1298627. [81] S.-Z. Huang, Gradient Inequalities. With Applications to Asymptotic Behavior and Stability of Gradient-Like Systems, vol. 126 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/surv/126. [82] S. Injrou and M. Pierre, Stable discretizations of the Cahn-Hilliard-Gurtin equations, Discrete Contin. Dyn. Syst., 22 (2008), 1065-1080.  doi: 10.3934/dcds.2008.22.1065. [83] S. Injrou and M. Pierre, Error estimates for a finite element discretization of the Cahn-Hilliard-Gurtin equations, Adv. Differential Equations, 15 (2010), 1161-1192. [84] M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Differential Equations, 144 (1998), 302-312.  doi: 10.1006/jdeq.1997.3392. [85] M. A. Jendoubi, A simple unified approach to some convergence theorems of L. Simon, J. Funct. Anal., 153 (1998), 187-202.  doi: 10.1006/jfan.1997.3174. [86] O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, vol. 13 of Mathématiques & Applications (Berlin), Springer-Verlag, Paris, 1993. [87] J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for ternary Cahn-Hilliard systems, Commun. Math. Sci., 2 (2004), 53-77.  doi: 10.4310/CMS.2004.v2.n1.a4. [88] R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Comm. Math. Phys., 229 (2002), 375-395.  doi: 10.1007/s00220-002-0693-4. [89] K. Kurdyka, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble), 48 (1998), 769-783.  doi: 10.5802/aif.1638. [90] F. D. R. Langa and M. Pierre, A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., Ser. S, 14 (2021), 653-676.  doi: 10.3934/dcdss.2020353. [91] D. Li, C. Quan and T. Tang, Stability and convergence analysis for the implicit-explicit method to the Cahn-Hilliard equation, Math. Comp., 91 (2022), 785-809.  doi: 10.1090/mcom/3704. [92] Y. Li, Y. Choi and J. Kim, Computationally efficient adaptive time step method for the Cahn-Hilliard equation, Comput. Math. Appl., 73 (2017), 1855-1864.  doi: 10.1016/j.camwa.2017.02.021. [93] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S. Notes, Available at https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf. [94] S. Łojasiewicz, Sur les trajectoires du gradient d'une fonction analytique, in Geometry Seminars, 1982–1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984,115–117. [95] G. J. Lord, Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg-Landau equation, SIAM J. Numer. Anal., 34 (1997), 1483-1512.  doi: 10.1137/S003614299528554X. [96] C. Lubich, D. Mansour and C. Venkataraman, Backward difference time discretization of parabolic differential equations on evolving surfaces, IMA J. Numer. Anal., 33 (2013), 1365-1385.  doi: 10.1093/imanum/drs044. [97] S. Maier-Paape and U. Miller, Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square, Discrete Contin. Dyn. Syst., 15 (2006), 1137-1153.  doi: 10.3934/dcds.2006.15.1137. [98] B. Merlet and T. N. Nguyen, Convergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds, Differential Integral Equations, 26 (2013), 571-602. [99] B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9 (2010), 685-702.  doi: 10.3934/cpaa.2010.9.685. [100] A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544. [101] A. Miranville, The Cahn-Hilliard Equation. Recent Advances and Applications, vol. 95 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2019. doi: 10.1137/1.9781611975925. [102] A. Miranville and A. Rougirel, Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations, Z. Angew. Math. Phys., 57 (2006), 244-268.  doi: 10.1007/s00033-005-0017-6. [103] A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275. [104] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.  doi: 10.1007/BF00251230. [105] L. Modica and S. Mortola, Un esempio di $\Gamma ^{-}$-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299. [106] F. Nabet, Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., 36 (2016), 1898-1942.  doi: 10.1093/imanum/drv057. [107] F. Nabet, An error estimate for a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, Numer. Math., 149 (2021), 185-226.  doi: 10.1007/s00211-021-01230-7. [108] O. Nevanlinna and F. Odeh, Multiplier techniques for linear multistep methods, Numer. Funct. Anal. Optim., 3 (1981), 377-423.  doi: 10.1080/01630568108816097. [109] A. Novick-Cohen, The Cahn-Hilliard equation, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008,201–228. doi: 10.1016/S1874-5717(08)00004-2. [110] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10 (1984), 277-298.  doi: 10.1016/0167-2789(84)90180-5. [111] M. Okumura and D. Furihata, A structure-preserving scheme for the Allen-Cahn equation with a dynamic boundary condition, Discrete Contin. Dyn. Syst., 40 (2020), 4927-4960.  doi: 10.3934/dcds.2020206. [112] J. Palis Jr. and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer-Verlag, New York-Berlin, 1982. [113] P. Parnaudeau, J.-M. Sac-Epee and A. Suzuki, An efficient and spectrally accurate code for computing Gross-Pitaevskii equation, ISC High Performance (ISC 2015). [114] M. Pierre, Maximum time step for high order BDF schemes applied to gradient flows, HAL preprint, https://hal.archives-ouvertes.fr/hal-03438159. [115] M. Pierre, Étude Numérique et Mathématique de Quelques Modèles de Transition de Phase, de Séparation de Phases, et de Cristaux Liquides, Habilitation thesis, Université de Poitiers, 2011. [116] M. Pierre, Convergence of exponential attractors for a finite element approximation of the Allen-Cahn equation, Numer. Funct. Anal. Optim., 39 (2018), 1755-1784.  doi: 10.1080/01630563.2018.1497651. [117] M. Pierre, Convergence of exponential attractors for a time semi-discrete reaction-diffusion equation, Numer. Math., 139 (2018), 121-153.  doi: 10.1007/s00211-017-0937-z. [118] M. Pierre, Maximum time step for the BDF3 scheme applied to gradient flows, Calcolo, 58 (2021), Paper No. 3, 17 pp. doi: 10.1007/s10092-020-00393-3. [119] M. Pierre and M. Pierre, Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation, Discrete Contin. Dyn. Syst., 33 (2013), 5347-5377.  doi: 10.3934/dcds.2013.33.5347. [120] M. Pierre and P. Rogeon, Convergence to equilibrium for a time semi-discrete damped wave equation, J. Appl. Anal. Comput., 6 (2016), 1041-1048.  doi: 10.11948/2016067. [121] P. Poláčik and F. Simondon, Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains, J. Differential Equations, 186 (2002), 586-610.  doi: 10.1016/S0022-0396(02)00014-1. [122] P. Politi and C. Misbah, Nonlinear dynamics in one dimension: a criterion for coarsening and its temporal law, Phys. Rev. E (3), 73 (2006), 036133, 15 pp. doi: 10.1103/PhysRevE.73.036133. [123] P. Rybka and K.-H. Hoffmann, Convergence of solutions to Cahn-Hilliard equation, Comm. Partial Differential Equations, 24 (1999), 1055-1077.  doi: 10.1080/03605309908821458. [124] J. Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations, Numer. Funct. Anal. Optim., 10 (1989), 1213-1234.  doi: 10.1080/01630568908816354. [125] J. Shen, C. Wang, X. Wang and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: Application to thin film epitaxy, SIAM J. Numer. Anal., 50 (2012), 105-125.  doi: 10.1137/110822839. [126] J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353 (2018), 407-416.  doi: 10.1016/j.jcp.2017.10.021. [127] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn. Syst., 28 (2010), 1669-1691.  doi: 10.3934/dcds.2010.28.1669. [128] J. Shin, Y. Choi and J. Kim, An unconditionally stable numerical method for the viscous Cahn-Hilliard equation, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1737-1747.  doi: 10.3934/dcdsb.2014.19.1737. [129] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2), 118 (1983), 525-571.  doi: 10.2307/2006981. [130] Z. Songmu, Asymptotic behavior of solution to the Cahn-Hillard equation, Appl. Anal., 23 (1986), 165-184.  doi: 10.1080/00036818608839639. [131] A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, vol. 2 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1996. [132] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68 of Applied Mathematical Sciences, 2nd edition, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. [133] G. Tierra and F. Guillén-González, Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models, Arch. Comput. Methods Eng., 22 (2015), 269-289.  doi: 10.1007/s11831-014-9112-1. [134] F. Tone, On the long-time stability of the Crank-Nicolson scheme for the 2D Navier-Stokes equations, Numer. Methods Partial Differential Equations, 23 (2007), 1235-1248.  doi: 10.1002/num.20219. [135] A. Visintin, Models of Phase Transitions, vol. 28 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4078-5. [136] X. Wang, Numerical algorithms for stationary statistical properties of dissipative dynamical systems, Discrete Contin. Dyn. Syst., 36 (2016), 4599-4618.  doi: 10.3934/dcds.2016.36.4599. [137] J. Wei and M. Winter, On the stationary Cahn-Hilliard equation: Interior spike solutions, J. Differential Equations, 148 (1998), 231-267.  doi: 10.1006/jdeq.1998.3479. [138] X. Wu, G. J. van Zwieten and K. G. van der Zee, Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models, Int. J. Numer. Methods Biomed. Eng., 30 (2014), 180-203.  doi: 10.1002/cnm.2597. [139] Y. Xia, Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type equations, J. Comput. Phys., 227 (2007), 472-491.  doi: 10.1016/j.jcp.2007.08.001. [140] X. Yang, Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends, Journal of Computational Physics, 327 (2016), 294-316.  doi: 10.1016/j.jcp.2016.09.029. [141] X. Yang, J. Zhao, Q. Wang and J. Shen, Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27 (2017), 1993-2030.  doi: 10.1142/S0218202517500373. [142] P. Yue, C. Zhou and J. J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, Journal of Computational Physics, 223 (2007), 1-9.  doi: 10.1016/j.jcp.2006.11.020.

Figures(14)