• Previous Article
    Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval
  • DCDS-S Home
  • This Issue
  • Next Article
    Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems
doi: 10.3934/dcdss.2022113
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Bifurcations and exact traveling wave solutions of the (n+1)-dimensional q-deformed double sinh-Gordon equations

1. 

School of Economics and Finance, Huaqiao University, Quanzhou, Fujian 362021, China

2. 

School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China

Received  March 2022 Revised  April 2022 Early access May 2022

We consider an (n+1)-dimensional q-deformed double sinh-Gordon equation. The dynamical system approach is employed to study the model problem, from which we are able to obtain all possible bounded solutions, such as solitary wave solutions, kink and anti-kink wave solutions, and periodic wave solutions under different parameter conditions. Eleven exact parametric representations are provided explicitly.

Citation: Jie Song. Bifurcations and exact traveling wave solutions of the (n+1)-dimensional q-deformed double sinh-Gordon equations. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022113
References:
[1]

A. Arab, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158 (1991), 63-79.  doi: 10.1016/0022-247X(91)90267-4.

[2]

A. Arab, Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space-time, J. Phys. A: Math. Gen., 34 (2001), 4281-4288.  doi: 10.1088/0305-4470/34/20/302.

[3]

A. Bastianello, B. Doyon, G. Watts, et al., Generalized hydrodynamics of classical integrable field theory: The sinh-Gordon model, SciPost Phys., 4 (2018), 045. doi: 10.21468/SciPostPhys.4.6.045.

[4]

P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Springer-Verlag, New York-Heidelberg, 1971.

[5]

I. Cabrera-Carnero and M. Moriconi, Noncommutative integrable field theories in 2d, Nucl. Phys. B, 673 (2003), 437-454.  doi: 10.1016/j.nuclphysb.2003.09.014.

[6]

H. Eleuch, Some analytical solitary wave solutions for the generalized q-deformed Sinh-Gordon equation: $\frac{\partial^2\theta}{\partial z\partial\xi} = \alpha[\sinh_q(\beta\theta^{\gamma})]^p-\delta$, Adv. Math. Phys., 2018 (2018), Art. ID 5242757, 7 pp. doi: 10.1155/2018/5242757.

[7]

Y. Geng, T. He and J. Li, Exact travelling wave solutions for the $(n+1$)-dimensional double sine- and sinh-Gordon equations, Appl. Math. Comput., 188, (2007), 1513–1534. doi: 10.1016/j.amc.2006.11.014.

[8]

K. K. Kobayashi and M. Izutsu, Exact solution of $n-$dimensional sine-Gordon equation, J. Phys. Soc. Japan, 41 (1976), 1091-1092.  doi: 10.1143/JPSJ.41.1091.

[9] J. Li, Singular Nonlinear Traveling Wave Equations Bifurcations and Exact Solutions, Science Press, Beijing, 2013. 
[10]

J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4049-4065.  doi: 10.1142/S0218127407019858.

[11]

J. Li, W. Zhu and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650207, 27 pp. doi: 10.1142/S0218127416502072.

[12]

S. LiuZ. Fu and S. Liu, Exact solutions to sine-Gordon-type equations, Phys Lett A., 351 (2006), 59-63.  doi: 10.1016/j.physleta.2005.10.054.

[13]

K. Narita, Deformed sine- and sinh-Gordon equations, deformed Liuville equation, and their discrete models, J. Phys. Soc. Japan, 72 (2003), 1339-1349.  doi: 10.1143/JPSJ.72.1339.

[14]

J. Song and J. Li, Bifurcations and exact travelling wave solutions for a shallow water wave model with a non-stationary bottom surface, J. Appl. Anal. Comput., 10 (2020), 350-360.  doi: 10.11948/20190254.

[15]

N. K. Vitanov, On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems, J. Physics. A. Math. Gen., 29 (1996), 5195-5207.  doi: 10.1088/0305-4470/29/16/036.

[16]

N. K. Vitanov, Breather and soliton wave families for the sine-Gordon equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2409-2423.  doi: 10.1098/rspa.1998.0264.

[17]

A. M. Wazwaz, The integrable time-dependent sine-Gordon equation with multiple optical kink solutions, Optik, 182 (2019), 605-610. 

show all references

References:
[1]

A. Arab, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158 (1991), 63-79.  doi: 10.1016/0022-247X(91)90267-4.

[2]

A. Arab, Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space-time, J. Phys. A: Math. Gen., 34 (2001), 4281-4288.  doi: 10.1088/0305-4470/34/20/302.

[3]

A. Bastianello, B. Doyon, G. Watts, et al., Generalized hydrodynamics of classical integrable field theory: The sinh-Gordon model, SciPost Phys., 4 (2018), 045. doi: 10.21468/SciPostPhys.4.6.045.

[4]

P. F. Byrd and M. D. Fridman, Handbook of Elliptic Integrals for Engineers and Sciensists, Springer-Verlag, New York-Heidelberg, 1971.

[5]

I. Cabrera-Carnero and M. Moriconi, Noncommutative integrable field theories in 2d, Nucl. Phys. B, 673 (2003), 437-454.  doi: 10.1016/j.nuclphysb.2003.09.014.

[6]

H. Eleuch, Some analytical solitary wave solutions for the generalized q-deformed Sinh-Gordon equation: $\frac{\partial^2\theta}{\partial z\partial\xi} = \alpha[\sinh_q(\beta\theta^{\gamma})]^p-\delta$, Adv. Math. Phys., 2018 (2018), Art. ID 5242757, 7 pp. doi: 10.1155/2018/5242757.

[7]

Y. Geng, T. He and J. Li, Exact travelling wave solutions for the $(n+1$)-dimensional double sine- and sinh-Gordon equations, Appl. Math. Comput., 188, (2007), 1513–1534. doi: 10.1016/j.amc.2006.11.014.

[8]

K. K. Kobayashi and M. Izutsu, Exact solution of $n-$dimensional sine-Gordon equation, J. Phys. Soc. Japan, 41 (1976), 1091-1092.  doi: 10.1143/JPSJ.41.1091.

[9] J. Li, Singular Nonlinear Traveling Wave Equations Bifurcations and Exact Solutions, Science Press, Beijing, 2013. 
[10]

J. Li and G. Chen, On a class of singular nonlinear traveling wave equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4049-4065.  doi: 10.1142/S0218127407019858.

[11]

J. Li, W. Zhu and G. Chen, Understanding peakons, periodic peakons and compactons via a shallow water wave equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 26 (2016), 1650207, 27 pp. doi: 10.1142/S0218127416502072.

[12]

S. LiuZ. Fu and S. Liu, Exact solutions to sine-Gordon-type equations, Phys Lett A., 351 (2006), 59-63.  doi: 10.1016/j.physleta.2005.10.054.

[13]

K. Narita, Deformed sine- and sinh-Gordon equations, deformed Liuville equation, and their discrete models, J. Phys. Soc. Japan, 72 (2003), 1339-1349.  doi: 10.1143/JPSJ.72.1339.

[14]

J. Song and J. Li, Bifurcations and exact travelling wave solutions for a shallow water wave model with a non-stationary bottom surface, J. Appl. Anal. Comput., 10 (2020), 350-360.  doi: 10.11948/20190254.

[15]

N. K. Vitanov, On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems, J. Physics. A. Math. Gen., 29 (1996), 5195-5207.  doi: 10.1088/0305-4470/29/16/036.

[16]

N. K. Vitanov, Breather and soliton wave families for the sine-Gordon equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454 (1998), 2409-2423.  doi: 10.1098/rspa.1998.0264.

[17]

A. M. Wazwaz, The integrable time-dependent sine-Gordon equation with multiple optical kink solutions, Optik, 182 (2019), 605-610. 

Figure 1.  Bifurcations of phase portraits of system (3) with $ (\alpha, \beta) = (-7,2.3) $
Figure 2.  Bifurcations of phase portraits of system (3) with $ (\alpha, \beta) = (7, -2.3) $
Figure 3.  Profile graph and 3d diagram of periodic wave
Figure 4.  Profile graph and 3d diagram of solitary wave
Figure 5.  Profile graph and 3d diagram of kink wave
Figure 6.  Profile graph and 3d diagram of anti-kink wave
Figure 7.  Profile graph and 3d diagram of solitary wave
Figure 8.  Profile graph and 3d diagram of periodic wave
Figure 9.  Profile graph and 3d diagram of periodic wave
Figure 10.  Profile graph and 3d diagram of solitary wave
Figure 11.  Changes of the level curves of system (5) as $ h $ varies in Fig. 2 (c)
Figure 12.  Profile graph and 3d diagram of periodic wave
Figure 13.  Profile graph and 3d diagram of solitary wave
Figure 14.  Profile graph and 3d diagram of solitary wave
Figure 15.  Profile graph and 3d diagram of solitary wave
[1]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[2]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[3]

Jose S. Cánovas. On q-deformed logistic maps. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2833-2848. doi: 10.3934/dcdsb.2021162

[4]

Tadas Telksnys, Zenonas Navickas, Miguel A. F. Sanjuán, Romas Marcinkevicius, Minvydas Ragulskis. Kink solitary solutions to a hepatitis C evolution model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4427-4447. doi: 10.3934/dcdsb.2020106

[5]

Jibin Li, Yi Zhang. Exact solitary wave and quasi-periodic wave solutions for four fifth-order nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 623-631. doi: 10.3934/dcdsb.2010.13.623

[6]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[7]

Anupam Sen, T. Raja Sekhar. Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2641-2653. doi: 10.3934/cpaa.2020115

[8]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[9]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[10]

Jerry L. Bona, Didier Pilod. Stability of solitary-wave solutions to the Hirota-Satsuma equation. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1391-1413. doi: 10.3934/dcds.2010.27.1391

[11]

Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925

[12]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[13]

Claudio Muñoz. The Gardner equation and the stability of multi-kink solutions of the mKdV equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3811-3843. doi: 10.3934/dcds.2016.36.3811

[14]

Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483

[15]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[16]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure and Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[17]

Chunyan Zhao, Chengkui Zhong, Zhijun Tang. Asymptotic behavior of the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022025

[18]

Rui Liu. Several new types of solitary wave solutions for the generalized Camassa-Holm-Degasperis-Procesi equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 77-90. doi: 10.3934/cpaa.2010.9.77

[19]

Xiaowan Li, Zengji Du, Shuguan Ji. Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Communications on Pure and Applied Analysis, 2019, 18 (6) : 2961-2981. doi: 10.3934/cpaa.2019132

[20]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (150)
  • HTML views (140)
  • Cited by (0)

Other articles
by authors

[Back to Top]