-
Previous Article
A 3D isothermal model for nematic liquid crystals with delay terms
- DCDS-S Home
- This Issue
-
Next Article
A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion
Motion of vortices for the extrinsic Ginzburg-Landau flow for vector fields on surfaces
1. | Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy |
2. | Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy |
$ F_ \varepsilon^{ \mathrm{extr}}(u): = \frac{1}{2}\int_M \left| {D u} \right|_g^2 + \left| { \mathscr{S} u} \right|^2_g +\frac{1}{2 \varepsilon^2}\left(\left| {u} \right|^2_g-1\right)^2 \mathrm{vol}_g $ |
$ D $ |
$ M\subseteq \mathbb{R}^3 $ |
$ \mathscr{S} $ |
$ M $ |
$ \varepsilon>0 $ |
$ \varepsilon $ |
$ \left| {u} \right|_g $ |
$ 1 $ |
$ M $ |
$ \varepsilon $ |
$ 0 $ |
$ F_ \varepsilon^{ \mathrm{extr}} $ |
$ \varepsilon\to 0 $ |
$ F_ \varepsilon^{ \mathrm{extr}} $ |
$ \varepsilon\to 0 $ |
$ M\subseteq \mathbb{R}^3 $ |
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston, Inc., Boston, MA, 1994.
doi: 10.1007/978-1-4612-0287-5. |
[3] |
G. Canevari and A. Segatti, Dynamics of Ginzburg-Landau vortices for vector fields on surfaces, 2021, preprint. https://arXiv.org/abs/2108.01321. |
[4] |
G. Canevari and A. Segatti,
Defects in nematic shells: A $\Gamma$-convergence discrete-to-continuum approach, Arch. Ration. Mech. Anal., 229 (2018), 125-186.
doi: 10.1007/s00205-017-1215-z. |
[5] |
G. Canevari, A. Segatti and M. Veneroni,
Morse's index formula in VMO for compact manifolds with boundary, J. Funct. Anal., 269 (2015), 3043-3082.
doi: 10.1016/j.jfa.2015.09.005. |
[6] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001, Reprint of the 1998 edition. |
[7] |
R. Ignat and R. L. Jerrard,
Renormalized energy between vortices in some Ginzburg-Landau models on 2-dimensional Riemannian manifolds, Arch. Ration. Mech. Anal., 239 (2021), 1577-1666.
doi: 10.1007/s00205-020-01598-0. |
[8] |
F. H. Lin,
Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math., 49 (1996), 323-359.
doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E. |
[9] |
T. C. Lubensky and J. Prost,
Orientational order and vesicle shape, J. Phys. II France, 2 (1992), 371-382.
doi: 10.1051/jp2:1992133. |
[10] |
G. Napoli and L. Vergori,
Extrinsic curvature effects on nematic shells, Phys. Rev. Lett., 108 (2012), 207803.
doi: 10.1103/PhysRevLett.108.207803. |
[11] |
G. Napoli and L. Vergori,
Surface free energies for nematic shells, Phys. Rev. E, 85 (2012), 061701.
doi: 10.1103/PhysRevE.85.061701. |
[12] |
D. R. Nelson,
Toward a tetravalent chemistry of colloids, Nano Lett., 2 (2002), 1125-1129.
doi: 10.1021/nl0202096. |
[13] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[14] |
C. Scott,
$L^p$ theory of differential forms on manifolds, Trans. Amer. Math. Soc., 347 (1995), 2075-2096.
doi: 10.2307/2154923. |
[15] |
A. Segatti, M. Snarski and M. Veneroni,
Equilibrium configurations of nematic liquid crystals on a torus, Phys. Rev. E, 90 (2014), 012501.
doi: 10.1103/PhysRevE.90.012501. |
[16] |
A. Segatti, M. Snarski and M. Veneroni,
Analysis of a variational model for nematic shells, Math. Models Methods Appl. Sci., 26 (2016), 1865-1918.
doi: 10.1142/S0218202516500470. |
[17] |
J. P. Straley,
Liquid crystals in two dimensions, Phys. Rev. A, 4 (1971), 675-681.
doi: 10.1103/PhysRevA.4.675. |
[18] |
D. H. Wagner,
Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), 859-903.
doi: 10.1137/0315056. |
show all references
References:
[1] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[2] |
F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston, Inc., Boston, MA, 1994.
doi: 10.1007/978-1-4612-0287-5. |
[3] |
G. Canevari and A. Segatti, Dynamics of Ginzburg-Landau vortices for vector fields on surfaces, 2021, preprint. https://arXiv.org/abs/2108.01321. |
[4] |
G. Canevari and A. Segatti,
Defects in nematic shells: A $\Gamma$-convergence discrete-to-continuum approach, Arch. Ration. Mech. Anal., 229 (2018), 125-186.
doi: 10.1007/s00205-017-1215-z. |
[5] |
G. Canevari, A. Segatti and M. Veneroni,
Morse's index formula in VMO for compact manifolds with boundary, J. Funct. Anal., 269 (2015), 3043-3082.
doi: 10.1016/j.jfa.2015.09.005. |
[6] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001, Reprint of the 1998 edition. |
[7] |
R. Ignat and R. L. Jerrard,
Renormalized energy between vortices in some Ginzburg-Landau models on 2-dimensional Riemannian manifolds, Arch. Ration. Mech. Anal., 239 (2021), 1577-1666.
doi: 10.1007/s00205-020-01598-0. |
[8] |
F. H. Lin,
Some dynamical properties of Ginzburg-Landau vortices, Comm. Pure Appl. Math., 49 (1996), 323-359.
doi: 10.1002/(SICI)1097-0312(199604)49:4<323::AID-CPA1>3.0.CO;2-E. |
[9] |
T. C. Lubensky and J. Prost,
Orientational order and vesicle shape, J. Phys. II France, 2 (1992), 371-382.
doi: 10.1051/jp2:1992133. |
[10] |
G. Napoli and L. Vergori,
Extrinsic curvature effects on nematic shells, Phys. Rev. Lett., 108 (2012), 207803.
doi: 10.1103/PhysRevLett.108.207803. |
[11] |
G. Napoli and L. Vergori,
Surface free energies for nematic shells, Phys. Rev. E, 85 (2012), 061701.
doi: 10.1103/PhysRevE.85.061701. |
[12] |
D. R. Nelson,
Toward a tetravalent chemistry of colloids, Nano Lett., 2 (2002), 1125-1129.
doi: 10.1021/nl0202096. |
[13] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[14] |
C. Scott,
$L^p$ theory of differential forms on manifolds, Trans. Amer. Math. Soc., 347 (1995), 2075-2096.
doi: 10.2307/2154923. |
[15] |
A. Segatti, M. Snarski and M. Veneroni,
Equilibrium configurations of nematic liquid crystals on a torus, Phys. Rev. E, 90 (2014), 012501.
doi: 10.1103/PhysRevE.90.012501. |
[16] |
A. Segatti, M. Snarski and M. Veneroni,
Analysis of a variational model for nematic shells, Math. Models Methods Appl. Sci., 26 (2016), 1865-1918.
doi: 10.1142/S0218202516500470. |
[17] |
J. P. Straley,
Liquid crystals in two dimensions, Phys. Rev. A, 4 (1971), 675-681.
doi: 10.1103/PhysRevA.4.675. |
[18] |
D. H. Wagner,
Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), 859-903.
doi: 10.1137/0315056. |
[1] |
Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179 |
[2] |
Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure and Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977 |
[3] |
Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075 |
[4] |
Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229 |
[5] |
Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205 |
[6] |
Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715 |
[7] |
Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121 |
[8] |
Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345 |
[9] |
Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461 |
[10] |
N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647 |
[11] |
Leonid Berlyand, Volodymyr Rybalko. Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes. Networks and Heterogeneous Media, 2013, 8 (1) : 115-130. doi: 10.3934/nhm.2013.8.115 |
[12] |
Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048 |
[13] |
Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713 |
[14] |
Satoshi Kosugi, Yoshihisa Morita. Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 149-168. doi: 10.3934/dcds.2006.14.149 |
[15] |
Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871 |
[16] |
Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173 |
[17] |
Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280 |
[18] |
N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476 |
[19] |
Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665 |
[20] |
Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]