August  2022, 15(8): 2249-2274. doi: 10.3934/dcdss.2022118

Attractors for the Navier-Stokes-Cahn-Hilliard system

1. 

Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom

2. 

Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405, USA

* Corresponding author: Andrea Giorgini

Dedicated to Professor Maurizio Grasselli on the occasion of his 60th birthday with friendship and best wishes

Received  February 2022 Published  August 2022 Early access  May 2022

We investigate the longtime behavior of the solutions to the Navier-Stokes-Cahn-Hilliard system (also known as Model H) with singular (e.g. Flory-Huggins) potential and non-constant viscosity. We prove that the initial and boundary value problem generates a strongly continuous semigroup on a suitable phase-space. Next, we establish the existence of the global attractor and of exponential attractors, and their regularity properties.

Citation: Andrea Giorgini, Roger Temam. Attractors for the Navier-Stokes-Cahn-Hilliard system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2249-2274. doi: 10.3934/dcdss.2022118
References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.  doi: 10.1007/s00205-008-0160-2.

[2]

H. Abels, Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system, Proceedings of the Conference "Nonlocal and Abstract Parabolic Equations and Their Applications", Bedlewo, in: Banach Center Publ., Polish Acad. Sci., 2009, pp. 9–19. doi: 10.4064/bc86-0-1.

[3]

D. M. AndersonG. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139-165.  doi: 10.1146/annurev.fluid.30.1.139.

[4]

S. BertiG. BoffettaM. Cencini and A. Vulpiani, Turbulence and coarsening in active and passive binary mixtures, Phys. Rev. Lett., 95 (2005), 224501. 

[5]

S. Bosia and S. Gatti, Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D, Dyn. Partial Differ. Equ., 11 (2014), 1-38.  doi: 10.4310/DPDE.2014.v11.n1.a1.

[6]

S. BosiaM. Grasselli and A. Miranville, On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures, Math. Methods Appl. Sci., 37 (2014), 726-743.  doi: 10.1002/mma.2832.

[7]

F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asympt. Anal., 20 (1999), 175-212. 

[8]

R. Chella and J. Vinals, Mixing of two-phase fluids by a cavity flow, Phys. Rev. E, 53 (1996), 3832-3840. 

[9]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.  doi: 10.1016/j.jde.2006.08.021.

[10]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes in $2D$, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27 (2010), 401-436.  doi: 10.1016/j.anihpc.2009.11.013.

[11]

C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Phys. D, 240 (2011), 629-635.  doi: 10.1016/j.physd.2010.11.014.

[12]

A. GiorginiM. Grasselli and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Meth. Appl. Sci., 27 (2017), 2485-2510.  doi: 10.1142/S0218202517500506.

[13]

A. GiorginiA. Miranville and R. Temam, Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51 (2019), 2535-2574.  doi: 10.1137/18M1223459.

[14]

M. E. GurtinD. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.  doi: 10.1142/S0218202596000341.

[15]

J. He and H. Wu, Global well-posedness of a Navier-Stokes-Cahn-Hilliard system with chemotaxis and singular potential in $2D$, J. Differential Equations, 297 (2021), 47-80.  doi: 10.1016/j.jde.2021.06.022.

[16]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479. 

[17]

D. Jacqmin, Calculation of two phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.  doi: 10.1006/jcph.1999.6332.

[18]

D. Jasnow and J. Vinãls, Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8 (1996), 660-669. 

[19]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.

[20]

A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math. 95, SIAM, Philadelphia, PA., 2019. doi: 10.1137/1.9781611975925.

[21]

A. Miranville and R. Temam, On the Cahn-Hilliard-Oono-Navier-Stokes equations wih singular potentials, Appl. Anal., 95 (2016), 2609-2624.  doi: 10.1080/00036811.2015.1102893.

[22]

A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Meth. Appl. Sci., 27 (2004), 545-582.  doi: 10.1002/mma.464.

[23]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[25]

R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, 2001. doi: 10.1090/chel/343.

[26]

L. ZhaoH. Wu and H. Huang, Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids, Commun. Math. Sci., 7 (2009), 939-962.  doi: 10.4310/CMS.2009.v7.n4.a7.

show all references

References:
[1]

H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463-506.  doi: 10.1007/s00205-008-0160-2.

[2]

H. Abels, Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system, Proceedings of the Conference "Nonlocal and Abstract Parabolic Equations and Their Applications", Bedlewo, in: Banach Center Publ., Polish Acad. Sci., 2009, pp. 9–19. doi: 10.4064/bc86-0-1.

[3]

D. M. AndersonG. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139-165.  doi: 10.1146/annurev.fluid.30.1.139.

[4]

S. BertiG. BoffettaM. Cencini and A. Vulpiani, Turbulence and coarsening in active and passive binary mixtures, Phys. Rev. Lett., 95 (2005), 224501. 

[5]

S. Bosia and S. Gatti, Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D, Dyn. Partial Differ. Equ., 11 (2014), 1-38.  doi: 10.4310/DPDE.2014.v11.n1.a1.

[6]

S. BosiaM. Grasselli and A. Miranville, On the longtime behavior of a 2D hydrodynamic model for chemically reacting binary fluid mixtures, Math. Methods Appl. Sci., 37 (2014), 726-743.  doi: 10.1002/mma.2832.

[7]

F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation, Asympt. Anal., 20 (1999), 175-212. 

[8]

R. Chella and J. Vinals, Mixing of two-phase fluids by a cavity flow, Phys. Rev. E, 53 (1996), 3832-3840. 

[9]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.  doi: 10.1016/j.jde.2006.08.021.

[10]

C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes in $2D$, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 27 (2010), 401-436.  doi: 10.1016/j.anihpc.2009.11.013.

[11]

C. G. Gal and M. Grasselli, Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system, Phys. D, 240 (2011), 629-635.  doi: 10.1016/j.physd.2010.11.014.

[12]

A. GiorginiM. Grasselli and A. Miranville, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Meth. Appl. Sci., 27 (2017), 2485-2510.  doi: 10.1142/S0218202517500506.

[13]

A. GiorginiA. Miranville and R. Temam, Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51 (2019), 2535-2574.  doi: 10.1137/18M1223459.

[14]

M. E. GurtinD. Polignone and J. Viñals, Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Methods Appl. Sci., 6 (1996), 815-831.  doi: 10.1142/S0218202596000341.

[15]

J. He and H. Wu, Global well-posedness of a Navier-Stokes-Cahn-Hilliard system with chemotaxis and singular potential in $2D$, J. Differential Equations, 297 (2021), 47-80.  doi: 10.1016/j.jde.2021.06.022.

[16]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys., 49 (1977), 435-479. 

[17]

D. Jacqmin, Calculation of two phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96-127.  doi: 10.1006/jcph.1999.6332.

[18]

D. Jasnow and J. Vinãls, Coarse-grained description of thermo-capillary flow, Phys. Fluids, 8 (1996), 660-669. 

[19]

C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179 (2003), 211-228.  doi: 10.1016/S0167-2789(03)00030-7.

[20]

A. Miranville, The Cahn-Hilliard Equation: Recent Advances and Applications, CBMS-NSF Regional Conf. Ser. in Appl. Math. 95, SIAM, Philadelphia, PA., 2019. doi: 10.1137/1.9781611975925.

[21]

A. Miranville and R. Temam, On the Cahn-Hilliard-Oono-Navier-Stokes equations wih singular potentials, Appl. Anal., 95 (2016), 2609-2624.  doi: 10.1080/00036811.2015.1102893.

[22]

A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Meth. Appl. Sci., 27 (2004), 545-582.  doi: 10.1002/mma.464.

[23]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[25]

R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, 2001. doi: 10.1090/chel/343.

[26]

L. ZhaoH. Wu and H. Huang, Convergence to equilibrium for a phase-field model for the mixture of two incompressible fluids, Commun. Math. Sci., 7 (2009), 939-962.  doi: 10.4310/CMS.2009.v7.n4.a7.

[1]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[2]

T. Tachim Medjo. A Cahn-Hilliard-Navier-Stokes model with delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2663-2685. doi: 10.3934/dcdsb.2016067

[3]

T. Tachim Medjo. Robust control of a Cahn-Hilliard-Navier-Stokes model. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2075-2101. doi: 10.3934/cpaa.2016028

[4]

Dong Li. A regularization-free approach to the Cahn-Hilliard equation with logarithmic potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2453-2460. doi: 10.3934/dcds.2021198

[5]

Bo You. Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2283-2298. doi: 10.3934/cpaa.2019103

[6]

Bo You. Trajectory statistical solutions for the Cahn-Hilliard-Navier-Stokes system with moving contact lines. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021251

[7]

T. Tachim Medjo. The exponential behavior of a stochastic Cahn-Hilliard-Navier-Stokes model with multiplicative noise. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1117-1138. doi: 10.3934/cpaa.2019054

[8]

Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419

[9]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308

[10]

Ciprian G. Gal. Robust exponential attractors for a conserved Cahn-Hilliard model with singularly perturbed boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (4) : 819-836. doi: 10.3934/cpaa.2008.7.819

[11]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic and Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[12]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[13]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[14]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[15]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[16]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[17]

Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099

[18]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[19]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181

[20]

T. Tachim Medjo. On weak martingale solutions to a stochastic Allen-Cahn-Navier-Stokes model with inertial effects. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021282

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (139)
  • HTML views (39)
  • Cited by (0)

Other articles
by authors

[Back to Top]