• Previous Article
    Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential
doi: 10.3934/dcdss.2022129
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence and multiplicity of solutions involving the $ p(x) $-Laplacian equations: On the effect of two nonlocal terms

1. 

Science and Technology for Defense Lab LR19DN01, CMR, Military Academy, Tunis, Tunisia, Military Aeronautical Specialities School, Sfax, Tunisia, Department of Mathematics, Faculty of Science, University of Sfax, Sfax, Tunisia

2. 

Department of Mathematics, Faculty of Science, University of El Manar, Tunis, Tunisia

3. 

Department of Mathematics, FSTH, Abdelmalek Essaadi University, Tétouan, Morocco

4. 

Faculty of Education, University of Ljubljana, Ljubljana, Slovenia, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia, Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

* Corresponding author: Dušan D. Repovš

Received  February 2022 Revised  May 2022 Early access June 2022

We study a class of $ p(x) $-Kirchhoff problems which is seldom studied because the nonlinearity has nonstandard growth and contains a bi-nonlocal term. Based on variational methods, especially the Mountain pass theorem and Ekeland's variational principle, we obtain the existence of two nontrivial solutions for the problem under certain assumptions. We also apply the Symmetric mountain pass theorem and Clarke's theorem to establish the existence of infinitely many solutions. Our results generalize and extend several existing results.

Citation: Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui, Omar Darhouche, Dušan D. Repovš. Existence and multiplicity of solutions involving the $ p(x) $-Laplacian equations: On the effect of two nonlocal terms. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022129
References:
[1]

M. Allaoui, Existence results for a class of $p(x)$-Kirchhoff problems, Studia Sci. Math. Hungar., 54 (2017), 316-331.  doi: 10.1556/012.2017.54.3.1369.

[2]

M. Allaoui and A. Ourraoui, Existence results for a class of $p(x)$-Kirchhoff problem with a singular weight, Mediterr. J. Math., 13 (2016), 677-686.  doi: 10.1007/s00009-015-0518-2.

[3]

C. O. Alves and T. Boudjeriou, Existence of solution for a class of heat equation involving the $p(x)$-Laplacian with triple regime, Z. Angew. Math. Phys., 72 (2021), Paper No. 2, 18 pp. doi: 10.1007/s00033-020-01430-5.

[4]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[5]

A. BahrouniV. D. Rădulescu and P. Winkert, A critical point theorem for perturbed functionals and low perturbations of differential and nonlocal systems, Adv. Nonlinear Stud., 20 (2020), 663-674.  doi: 10.1515/ans-2020-2095.

[6]

C. J. Batkam, An elliptic equation under the effect of two nonlocal terms, Math. Methods Appl. Sci., 39 (2016), 1535-1547.  doi: 10.1002/mma.3587.

[7]

C. J. Batkam, Multiple sign-changing solutions to a class of Kirchhoff type problems, arXiv: 1501.05733 [math.AP]

[8]

Z. BinlinG. Molica Bisci and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 28 (2015), 2247-2264.  doi: 10.1088/0951-7715/28/7/2247.

[9]

J. Chabrowski, On bi-nonlocal problem for elliptic equations with Neumann boundary conditions, J. Anal. Math., 134 (2018), 303-334.  doi: 10.1007/s11854-018-0011-5.

[10]

D. Choudhuri, Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition, Z. Angew. Math. Phys., 72 (2021), Paper No. 36, 26 pp. doi: 10.1007/s00033-020-01464-9.

[11]

D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22 (1972), 65-74.  doi: 10.1512/iumj.1973.22.22008.

[12]

F. J. S. A. Corrêa and A. C. D. R. Costa, A variational approach for a bi-nonlocal elliptic problem involving the $p(x)$-Laplacian and non-linearity with non-standard growth, Glasg. Math. J., 56 (2014), 317-333.  doi: 10.1017/S001708951300027X.

[13]

F. J. S. A. Corrêa and A. C. D. R. Costa, On a bi-non-local $p(x)$-Kirchhoff equation via Krasnoselskii's genus, Math. Meth. Appl. Sci., 38 (2015), 87-93.  doi: 10.1002/mma.3051.

[14]

F. J. S. A. Corrêa and G. M. Figueiredo, Existence and multiplicity of nontrivial solutions for a bi-nonlocal equation, Adv. Differential Equations, 18 (2013), 587-608. 

[15]

X.-L. Fan and Q.-H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5.

[16]

M. K. Hamdani, On a nonlocal asymmetric Kirchhoff problem, Asian-Eur. J. Math., 13 (2020), 2030001, 15 pp.. doi: 10.1142/S1793557120300018.

[17]

M. K. Hamdani, A. Harrabi, F. Mtiri and D. D. Repovš, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598, 15 pp. doi: 10.1016/j.na.2019.111598.

[18]

M. K. Hamdani and D. D. Repovš, Existence of solutions for systems arising in electromagnetism, J. Math. Anal. Appl., 486 (2020), 123898, 18 pp. doi: 10.1016/j.jmaa.2020.123898.

[19]

Y. Jalilian, Infinitely many solutions for a bi-nonlocal equation with sign changing weight functions, Bull. Iranian Math. Soc., 42 (2016), 611-626. 

[20]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[21]

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.

[22]

J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346. 

[23]

N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019. doi: 10.1007/978-3-030-03430-6.

[24]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., 1986. doi: 10.1090/cbms/065.

[25]

V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Boca Raton, CRC Press, 2015. doi: 10.1201/b18601.

[26]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second ed., Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-662-03212-1.

[27]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[28]

Z. Yucedag, Existence of solutions for $p(x)$-Laplacian equations without Ambrosetti-Rabinowitz type condition, Bull. Malays. Math. Sci. Soc., 38 (2015), 1023-1033.  doi: 10.1007/s40840-014-0057-1.

[29]

B. L. ZhangB. Ge and X.-F. Cao, Multiple Solutions for a Class of New p(x)-Kirchhoff Problem without the Ambrosetti-Rabinowitz conditions, Mathematics, 8 (2020), 2068. 

[30]

J. ZuoA. Fiscella and A. Bahrouni, Existence and multiplicity results for $p(\cdot)$ & $q(\cdot)$ fractional Choquard problems with variable order, Complex Var. Elliptic Equ., 67 (2022), 500-516.  doi: 10.1080/17476933.2020.1835878.

show all references

References:
[1]

M. Allaoui, Existence results for a class of $p(x)$-Kirchhoff problems, Studia Sci. Math. Hungar., 54 (2017), 316-331.  doi: 10.1556/012.2017.54.3.1369.

[2]

M. Allaoui and A. Ourraoui, Existence results for a class of $p(x)$-Kirchhoff problem with a singular weight, Mediterr. J. Math., 13 (2016), 677-686.  doi: 10.1007/s00009-015-0518-2.

[3]

C. O. Alves and T. Boudjeriou, Existence of solution for a class of heat equation involving the $p(x)$-Laplacian with triple regime, Z. Angew. Math. Phys., 72 (2021), Paper No. 2, 18 pp. doi: 10.1007/s00033-020-01430-5.

[4]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[5]

A. BahrouniV. D. Rădulescu and P. Winkert, A critical point theorem for perturbed functionals and low perturbations of differential and nonlocal systems, Adv. Nonlinear Stud., 20 (2020), 663-674.  doi: 10.1515/ans-2020-2095.

[6]

C. J. Batkam, An elliptic equation under the effect of two nonlocal terms, Math. Methods Appl. Sci., 39 (2016), 1535-1547.  doi: 10.1002/mma.3587.

[7]

C. J. Batkam, Multiple sign-changing solutions to a class of Kirchhoff type problems, arXiv: 1501.05733 [math.AP]

[8]

Z. BinlinG. Molica Bisci and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity, 28 (2015), 2247-2264.  doi: 10.1088/0951-7715/28/7/2247.

[9]

J. Chabrowski, On bi-nonlocal problem for elliptic equations with Neumann boundary conditions, J. Anal. Math., 134 (2018), 303-334.  doi: 10.1007/s11854-018-0011-5.

[10]

D. Choudhuri, Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition, Z. Angew. Math. Phys., 72 (2021), Paper No. 36, 26 pp. doi: 10.1007/s00033-020-01464-9.

[11]

D. C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., 22 (1972), 65-74.  doi: 10.1512/iumj.1973.22.22008.

[12]

F. J. S. A. Corrêa and A. C. D. R. Costa, A variational approach for a bi-nonlocal elliptic problem involving the $p(x)$-Laplacian and non-linearity with non-standard growth, Glasg. Math. J., 56 (2014), 317-333.  doi: 10.1017/S001708951300027X.

[13]

F. J. S. A. Corrêa and A. C. D. R. Costa, On a bi-non-local $p(x)$-Kirchhoff equation via Krasnoselskii's genus, Math. Meth. Appl. Sci., 38 (2015), 87-93.  doi: 10.1002/mma.3051.

[14]

F. J. S. A. Corrêa and G. M. Figueiredo, Existence and multiplicity of nontrivial solutions for a bi-nonlocal equation, Adv. Differential Equations, 18 (2013), 587-608. 

[15]

X.-L. Fan and Q.-H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5.

[16]

M. K. Hamdani, On a nonlocal asymmetric Kirchhoff problem, Asian-Eur. J. Math., 13 (2020), 2030001, 15 pp.. doi: 10.1142/S1793557120300018.

[17]

M. K. Hamdani, A. Harrabi, F. Mtiri and D. D. Repovš, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Anal., 190 (2020), 111598, 15 pp. doi: 10.1016/j.na.2019.111598.

[18]

M. K. Hamdani and D. D. Repovš, Existence of solutions for systems arising in electromagnetism, J. Math. Anal. Appl., 486 (2020), 123898, 18 pp. doi: 10.1016/j.jmaa.2020.123898.

[19]

Y. Jalilian, Infinitely many solutions for a bi-nonlocal equation with sign changing weight functions, Bull. Iranian Math. Soc., 42 (2016), 611-626. 

[20]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[21]

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.

[22]

J.-L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346. 

[23]

N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Nonlinear Analysis - Theory and Methods, Springer Monographs in Mathematics, Springer, Cham, 2019. doi: 10.1007/978-3-030-03430-6.

[24]

P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., 1986. doi: 10.1090/cbms/065.

[25]

V. D. Rădulescu and D. D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Boca Raton, CRC Press, 2015. doi: 10.1201/b18601.

[26]

M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Second ed., Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-662-03212-1.

[27]

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.

[28]

Z. Yucedag, Existence of solutions for $p(x)$-Laplacian equations without Ambrosetti-Rabinowitz type condition, Bull. Malays. Math. Sci. Soc., 38 (2015), 1023-1033.  doi: 10.1007/s40840-014-0057-1.

[29]

B. L. ZhangB. Ge and X.-F. Cao, Multiple Solutions for a Class of New p(x)-Kirchhoff Problem without the Ambrosetti-Rabinowitz conditions, Mathematics, 8 (2020), 2068. 

[30]

J. ZuoA. Fiscella and A. Bahrouni, Existence and multiplicity results for $p(\cdot)$ & $q(\cdot)$ fractional Choquard problems with variable order, Complex Var. Elliptic Equ., 67 (2022), 500-516.  doi: 10.1080/17476933.2020.1835878.

[1]

Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154

[2]

Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425

[3]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[4]

Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025

[5]

Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099

[6]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029

[7]

Lauren M. M. Bonaldo, Elard J. Hurtado, Olímpio H. Miyagaki. Multiplicity results for elliptic problems involving nonlocal integrodifferential operators without Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3329-3353. doi: 10.3934/dcds.2022017

[8]

Jinguo Zhang, Dengyun Yang. Fractional $ p $-sub-Laplacian operator problem with concave-convex nonlinearities on homogeneous groups. Electronic Research Archive, 2021, 29 (5) : 3243-3260. doi: 10.3934/era.2021036

[9]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control and Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[10]

Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276

[11]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[12]

K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013

[13]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4805-4821. doi: 10.3934/dcds.2021058

[14]

Fang Liu. The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2701-2720. doi: 10.3934/dcdsb.2021155

[15]

Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198

[16]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[17]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[18]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[19]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241

[20]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (143)
  • HTML views (43)
  • Cited by (0)

[Back to Top]