doi: 10.3934/dcdss.2022131
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Prescribed-time time-varying sliding mode based integrated translation and rotation control for spacecraft formation flying

1. 

Beijing Institute of Tracking and Telecommunications Technology, Beijing, China

2. 

Shanghai Institute of Satellite Engineering, Shanghai, China

3. 

Shanghai JiaoTong University, Shanghai, China

* Corresponding author: Xiaowei Shao

Received  October 2021 Revised  February 2022 Early access June 2022

This paper studies the prescribed-time spacecraft formation flying problem. The coupled 6-degrees-of-freedom kinematics and dynamics for spacecraft are modeled on Lie group SE(3), where the gravity-gradient torque, the perturbing forces caused by Earth's oblateness and unknown external disturbances are all taken into account. The relative configuration is expressed by using exponential coordinates of SE(3). In order to regulate the relative motion between the leader spacecraft and follower spacecraft, a novel prescribed-time control law is given based on a prescribed-time time-varying high-gain sliding mode method. Numerical simulations verify the effectiveness of the proposed control scheme.

Citation: Li Chen, Yongyan Sun, Xiaowei Shao, Junli Chen, Dexin Zhang. Prescribed-time time-varying sliding mode based integrated translation and rotation control for spacecraft formation flying. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022131
References:
[1]

K. Alfriend, S. R. Vadali, P. Gurfil, J. P. How and L. Breger, Spacecraft Formation Flying: Dynamics, Control and Navigation (Vol. 2), Elsevier, Oxford, 2009.

[2]

R. W. BeardL. Lawton and F. Y. Hadaegh, A coordination architecture for spacecraft formation control, IEEE Trans. Contr. Syst. Technol., 9 (2001), 777-790. 

[3]

S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766.  doi: 10.1137/S0363012997321358.

[4]

J. D. Biggs and L. Colley, Geometric attitude motion planning for spacecraft with pointing and actuator constraints, J. Guid., Control, Dyn., 39 (2016), 1672-1677. 

[5]

F. Bullo and R. M. Murray, Proportional derivative (PD) control on the Euclidean group, Proceedings of IN European Control Conference, Zurich, Switzerland, 1995, 1091–1097.

[6]

S. DingK. Mei and S. Li, A new second-order sliding mode and its application to nonlinear constrained systems, IEEE Trans. Automat. Contr., 64 (2019), 2545-2552.  doi: 10.1109/TAC.2018.2867163.

[7]

K. GongY. Liao and Y. Wang, Adaptive fixed-time terminal sliding mode control on SE (3) for coupled spacecraft tracking maneuver, Int. J. Aerosp. Eng., 2020 (2020), 1-15. 

[8]

Y. HongJ. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Trans. Automat. Contr., 51 (2006), 858-862.  doi: 10.1109/TAC.2006.875006.

[9]

J. Y. HungW. Gao and J. C. Hung, Variable structure control: A survey, IEEE Trans. Ind. Electron., 40 (1993), 2-22. 

[10]

Y. Huang and Y. Jia, Distributed finite-time output feedback synchronisation control for six DOF spacecraft formation subject to input saturation, IET Control. Theory Appl., 12 (2018), 532-542.  doi: 10.1049/iet-cta.2017.0842.

[11]

H. K. Khalil, Nonlinear Control, 1$^{st}$ edition, USA: Pearson, New York, 2015.

[12]

Q. LanJ. YangS. Li and H. Sun, Finite-time control for 6DOF spacecraft formation flying systems, J. Aerosp. Eng., 28 (2015), 04014137. 

[13]

D. Lee, Spacecraft coupled tracking maneuver using sliding mode control with input saturation, J. Aerosp. Eng., 28 (2015), 04014136. 

[14]

D. LeeA. K. Sanyal and E. A. Butcher, Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance, J. Guid., Control, Dyn., 38 (2015), 587-600. 

[15]

D. Lee and G. Vukovich, Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid, Aerosp. Sci. Technol., 46 (2015), 471-483. 

[16]

Q. LiJ. YuanB. Zhang and H. Wang, Disturbance observer based control for spacecraft proximity operations with path constraint, Aerosp. Sci. Technol., 79 (2018), 154-163. 

[17]

X. LiD. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.

[18]

X. LiX. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica J. IFAC, 103 (2019), 135-140.  doi: 10.1016/j.automatica.2019.01.031.

[19]

K. Mei and S. Ding, HOSM controller design with asymmetric output constraints, Sci. China Inf. Sci., 65 (2022), Paper No. 189202, 2 pp. doi: 10.1007/s11432-020-3158-8.

[20]

M. NazariE. A. ButcherT. Yucelen and A. K. Sanyal, Decentralized consensus control of a rigid-body spacecraft formation with communication delay, J. Guid., Control, Dyn., 39 (2016), 838-851. 

[21]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Contr., 57 (2012), 2106-2110.  doi: 10.1109/TAC.2011.2179869.

[22]

W. Ren and R. W. Beard, Decentralized scheme for spacecraft formation flying via the virtual structure approach, J. Guid., Control, Dyn., 27 (2004), 73-82. 

[23]

C. SabolR. Burns and C. A. McLaughlin, Satellite formation flying design and evolution, J. Spacecr. Rockets, 38 (2001), 270-278. 

[24]

A. SanyalN. Nordkvist and M. Chyba, An almost global tracking control scheme for maneuverable autonomous vehicles and its discretization, IEEE Trans. Automat. Contr., 56 (2011), 457-462.  doi: 10.1109/TAC.2010.2090190.

[25]

Y. SongY. WangJ. Holloway and M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica J. IFAC, 83 (2017), 243-251.  doi: 10.1016/j.automatica.2017.06.008.

[26]

L. Sun and W. Huo, Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous, Aerosp. Sci. Technol., 41 (2015), 28-35. 

[27]

R. SunJ. WangD. Zhang and X. Shao, Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy, Adv. Space Res., 61 (2018), 914-926. 

[28]

J. WangH. LiangZ. SunS. Zhang and M. Liu, Finite-time control for spacecraft formation with dual-number-based description, J. Guid., Control, Dyn., 35 (2012), 950-962. 

[29]

J. Wang and Z. Sun, 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying, Acta Astronaut., 73 (2012), 76-87. 

[30]

Y. WangH. HongJ. GuoX. Wang and W. Shang, Configuration error function design and application to fixed-time geometric terminal sliding-mode control on SE (3), Acta Astronaut., 174 (2020), 61-71. 

[31]

M. Wittal, G. Mangiacapra, A. Appakonam, M. Nazari and E. Capello, Stochastic spacecraft navigation and control in Lie SE (3) around small irregular bodies, Proceeding of AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Virtual, 2021.

[32]

S. WuL. ChenD. ZhangJ. Chen and X. Shao, Disturbance observer based fixed time sliding mode control for spacecraft proximity operations with coupled dynamics, Adv. Space Res., 66 (2020), 2179-2193. 

[33]

C. ZhangJ. WangR. SunD. Zhang and X. Shao, Multi-spacecraft attitude cooperative control using model-based event-triggered methodology, Adv. Space Res., 62 (2018), 2620-2630. 

[34]

F. Zhang and G. R. Duan, Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment, Acta Astronaut., 86 (2013), 167-187. 

[35]

J. ZhangD. YeJ. D. Biggs and Z. Sun, Finite-time relative orbit-attitude tracking control for multi-spacecraft with collision avoidance and changing network topologies, Adv. Space Res., 63 (2019), 1161-1175. 

[36]

J. ZhangD. YeZ. Sun and C. Liu, Extended state observer based robust adaptive control on SE (3) for coupled spacecraft tracking maneuver with actuator saturation an misalignment, Acta Astronaut., 143 (2015), 221-233. 

[37]

B. Zhou, Finite-time stabilization of linear systems by bounded linear time-varying feedback, Automatica J. IFAC, 113 (2020), 108760, 11 pp. doi: 10.1016/j.automatica.2019.108760.

[38]

B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback, Automatica J. IFAC, 121 (2020), 109191, 12 pp. doi: 10.1016/j.automatica.2020.109191.

show all references

References:
[1]

K. Alfriend, S. R. Vadali, P. Gurfil, J. P. How and L. Breger, Spacecraft Formation Flying: Dynamics, Control and Navigation (Vol. 2), Elsevier, Oxford, 2009.

[2]

R. W. BeardL. Lawton and F. Y. Hadaegh, A coordination architecture for spacecraft formation control, IEEE Trans. Contr. Syst. Technol., 9 (2001), 777-790. 

[3]

S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751-766.  doi: 10.1137/S0363012997321358.

[4]

J. D. Biggs and L. Colley, Geometric attitude motion planning for spacecraft with pointing and actuator constraints, J. Guid., Control, Dyn., 39 (2016), 1672-1677. 

[5]

F. Bullo and R. M. Murray, Proportional derivative (PD) control on the Euclidean group, Proceedings of IN European Control Conference, Zurich, Switzerland, 1995, 1091–1097.

[6]

S. DingK. Mei and S. Li, A new second-order sliding mode and its application to nonlinear constrained systems, IEEE Trans. Automat. Contr., 64 (2019), 2545-2552.  doi: 10.1109/TAC.2018.2867163.

[7]

K. GongY. Liao and Y. Wang, Adaptive fixed-time terminal sliding mode control on SE (3) for coupled spacecraft tracking maneuver, Int. J. Aerosp. Eng., 2020 (2020), 1-15. 

[8]

Y. HongJ. Wang and D. Cheng, Adaptive finite-time control of nonlinear systems with parametric uncertainty, IEEE Trans. Automat. Contr., 51 (2006), 858-862.  doi: 10.1109/TAC.2006.875006.

[9]

J. Y. HungW. Gao and J. C. Hung, Variable structure control: A survey, IEEE Trans. Ind. Electron., 40 (1993), 2-22. 

[10]

Y. Huang and Y. Jia, Distributed finite-time output feedback synchronisation control for six DOF spacecraft formation subject to input saturation, IET Control. Theory Appl., 12 (2018), 532-542.  doi: 10.1049/iet-cta.2017.0842.

[11]

H. K. Khalil, Nonlinear Control, 1$^{st}$ edition, USA: Pearson, New York, 2015.

[12]

Q. LanJ. YangS. Li and H. Sun, Finite-time control for 6DOF spacecraft formation flying systems, J. Aerosp. Eng., 28 (2015), 04014137. 

[13]

D. Lee, Spacecraft coupled tracking maneuver using sliding mode control with input saturation, J. Aerosp. Eng., 28 (2015), 04014136. 

[14]

D. LeeA. K. Sanyal and E. A. Butcher, Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance, J. Guid., Control, Dyn., 38 (2015), 587-600. 

[15]

D. Lee and G. Vukovich, Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid, Aerosp. Sci. Technol., 46 (2015), 471-483. 

[16]

Q. LiJ. YuanB. Zhang and H. Wang, Disturbance observer based control for spacecraft proximity operations with path constraint, Aerosp. Sci. Technol., 79 (2018), 154-163. 

[17]

X. LiD. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica J. IFAC, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.

[18]

X. LiX. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica J. IFAC, 103 (2019), 135-140.  doi: 10.1016/j.automatica.2019.01.031.

[19]

K. Mei and S. Ding, HOSM controller design with asymmetric output constraints, Sci. China Inf. Sci., 65 (2022), Paper No. 189202, 2 pp. doi: 10.1007/s11432-020-3158-8.

[20]

M. NazariE. A. ButcherT. Yucelen and A. K. Sanyal, Decentralized consensus control of a rigid-body spacecraft formation with communication delay, J. Guid., Control, Dyn., 39 (2016), 838-851. 

[21]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Contr., 57 (2012), 2106-2110.  doi: 10.1109/TAC.2011.2179869.

[22]

W. Ren and R. W. Beard, Decentralized scheme for spacecraft formation flying via the virtual structure approach, J. Guid., Control, Dyn., 27 (2004), 73-82. 

[23]

C. SabolR. Burns and C. A. McLaughlin, Satellite formation flying design and evolution, J. Spacecr. Rockets, 38 (2001), 270-278. 

[24]

A. SanyalN. Nordkvist and M. Chyba, An almost global tracking control scheme for maneuverable autonomous vehicles and its discretization, IEEE Trans. Automat. Contr., 56 (2011), 457-462.  doi: 10.1109/TAC.2010.2090190.

[25]

Y. SongY. WangJ. Holloway and M. Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica J. IFAC, 83 (2017), 243-251.  doi: 10.1016/j.automatica.2017.06.008.

[26]

L. Sun and W. Huo, Robust adaptive relative position tracking and attitude synchronization for spacecraft rendezvous, Aerosp. Sci. Technol., 41 (2015), 28-35. 

[27]

R. SunJ. WangD. Zhang and X. Shao, Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy, Adv. Space Res., 61 (2018), 914-926. 

[28]

J. WangH. LiangZ. SunS. Zhang and M. Liu, Finite-time control for spacecraft formation with dual-number-based description, J. Guid., Control, Dyn., 35 (2012), 950-962. 

[29]

J. Wang and Z. Sun, 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying, Acta Astronaut., 73 (2012), 76-87. 

[30]

Y. WangH. HongJ. GuoX. Wang and W. Shang, Configuration error function design and application to fixed-time geometric terminal sliding-mode control on SE (3), Acta Astronaut., 174 (2020), 61-71. 

[31]

M. Wittal, G. Mangiacapra, A. Appakonam, M. Nazari and E. Capello, Stochastic spacecraft navigation and control in Lie SE (3) around small irregular bodies, Proceeding of AAS/AIAA Astrodynamics Specialist Conference, Big Sky, Virtual, 2021.

[32]

S. WuL. ChenD. ZhangJ. Chen and X. Shao, Disturbance observer based fixed time sliding mode control for spacecraft proximity operations with coupled dynamics, Adv. Space Res., 66 (2020), 2179-2193. 

[33]

C. ZhangJ. WangR. SunD. Zhang and X. Shao, Multi-spacecraft attitude cooperative control using model-based event-triggered methodology, Adv. Space Res., 62 (2018), 2620-2630. 

[34]

F. Zhang and G. R. Duan, Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment, Acta Astronaut., 86 (2013), 167-187. 

[35]

J. ZhangD. YeJ. D. Biggs and Z. Sun, Finite-time relative orbit-attitude tracking control for multi-spacecraft with collision avoidance and changing network topologies, Adv. Space Res., 63 (2019), 1161-1175. 

[36]

J. ZhangD. YeZ. Sun and C. Liu, Extended state observer based robust adaptive control on SE (3) for coupled spacecraft tracking maneuver with actuator saturation an misalignment, Acta Astronaut., 143 (2015), 221-233. 

[37]

B. Zhou, Finite-time stabilization of linear systems by bounded linear time-varying feedback, Automatica J. IFAC, 113 (2020), 108760, 11 pp. doi: 10.1016/j.automatica.2019.108760.

[38]

B. Zhou, Finite-time stability analysis and stabilization by bounded linear time-varying feedback, Automatica J. IFAC, 121 (2020), 109191, 12 pp. doi: 10.1016/j.automatica.2020.109191.

Figure 1.  Tracking error of the attitude and position for the $ 1 $st follower
Figure 2.  Tracking error of the angular velocity and velocity for the 1st follower
Figure 3.  Control torque and force for the 1st follower
Figure 4.  Tracking error of the attitude and position for the 2nd follower
Figure 5.  Tracking error of the attitude and position for the 2nd follower
Figure 6.  Control torque and force for the 2nd follower
Figure 7.  Tracking error of the attitude and position for the 3rd follower
Figure 8.  Tracking error of the attitude and position for the 3rd follower
Figure 9.  Control torque and force for the 3rd follower
[1]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

[2]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050

[3]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations and Control Theory, 2022, 11 (2) : 373-397. doi: 10.3934/eect.2021004

[4]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[5]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[6]

Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3597-3607. doi: 10.3934/dcdsb.2020074

[7]

Bing Sun. Optimal control of transverse vibration of a moving string with time-varying lengths. Mathematical Control and Related Fields, 2022, 12 (3) : 733-746. doi: 10.3934/mcrf.2021042

[8]

Mustaffa Alfatlawi, Vaibhav Srivastava. An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling. Journal of Computational Dynamics, 2020, 7 (2) : 209-241. doi: 10.3934/jcd.2020009

[9]

Xiang Dong, Chengcheng Ren, Shuping He, Long Cheng, Shuo Wang. Finite-time sliding mode control for UVMS via T-S fuzzy approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1699-1712. doi: 10.3934/dcdss.2021167

[10]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1683-1695. doi: 10.3934/dcdss.2020098

[11]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168

[12]

Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of time-varying systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3585-3603. doi: 10.3934/dcdsb.2021197

[13]

Carlos Nonato, Manoel Jeremias dos Santos, Carlos Raposo. Dynamics of Timoshenko system with time-varying weight and time-varying delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 523-553. doi: 10.3934/dcdsb.2021053

[14]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[15]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control and Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[16]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[17]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[18]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[19]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[20]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (118)
  • HTML views (90)
  • Cited by (0)

[Back to Top]