• Previous Article
    Blowing-up solutions of differential equations with shifts: A survey
  • DCDS-S Home
  • This Issue
  • Next Article
    WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution
doi: 10.3934/dcdss.2022137
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Some remarks on lattice and nonlocal dispersal evolution systems

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

Dedicated to Professor Jibin Li on the occasion of his 80th birthday

Received  March 2022 Revised  May 2022 Early access July 2022

Fund Project: Research is supported in part by the NSERC of Canada (RGPIN-2019-05648)

In this paper, we first characterize the continuity of a map in the space $ \mathcal{C} = BC(\mathcal{H},\mathbb{R}^m) $ equipped with the compact open topology. Then we show that linear lattice and nonlocal dispersal equations generate uniformly continuous semigroups in the Banach space $ \mathcal{B} = BC(\mathcal{H},\mathbb{R}^m) $ equipped with the supremum norm. Finally, we illustrate how to prove nonlinear lattice and nonlocal dispersal equations generate monotone semiflows with respect to the compact open topology.

Citation: Xiao-Qiang Zhao. Some remarks on lattice and nonlocal dispersal evolution systems. Discrete and Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2022137
References:
[1]

J. Fang and X.-Q. Zhao, Bistable travelling waves for monotone semiflows with applications, J. Eur. Math. Soc., 17 (2015), 2243-2288.  doi: 10.4171/JEMS/556.

[2]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Communications on Pure and Applied Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.

[3]

R. Lui, Biological growth and spread modeled by systems of recursions, I. mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.

[4]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.

[5]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[6]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.

[7]

H. F. Weinberger, On spreading speeds and travelling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.

[8]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.

[9]

K. F. Zhang and X.-Q. Zhao, Spreading speed and travelling waves for a spatially discrete SIS epidemic model, Nonlinearity, 21 (2008), 97-112.  doi: 10.1088/0951-7715/21/1/005.

show all references

References:
[1]

J. Fang and X.-Q. Zhao, Bistable travelling waves for monotone semiflows with applications, J. Eur. Math. Soc., 17 (2015), 2243-2288.  doi: 10.4171/JEMS/556.

[2]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Communications on Pure and Applied Math., 60 (2007), 1-40.  doi: 10.1002/cpa.20154.

[3]

R. Lui, Biological growth and spread modeled by systems of recursions, I. mathematical theory, Math. Biosci., 93 (1989), 269-295.  doi: 10.1016/0025-5564(89)90026-6.

[4]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.

[5]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[6]

H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396.  doi: 10.1137/0513028.

[7]

H. F. Weinberger, On spreading speeds and travelling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.  doi: 10.1007/s00285-002-0169-3.

[8]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.  doi: 10.1016/j.jde.2006.01.020.

[9]

K. F. Zhang and X.-Q. Zhao, Spreading speed and travelling waves for a spatially discrete SIS epidemic model, Nonlinearity, 21 (2008), 97-112.  doi: 10.1088/0951-7715/21/1/005.

[1]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[2]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[3]

M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385

[4]

Jian-Wen Sun. Nonlocal dispersal equations in domains becoming unbounded. Discrete and Continuous Dynamical Systems - B, 2023, 28 (1) : 287-293. doi: 10.3934/dcdsb.2022076

[5]

Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566

[6]

Ken-Ichi Nakamura, Toshiko Ogiwara. Periodically growing solutions in a class of strongly monotone semiflows. Networks and Heterogeneous Media, 2012, 7 (4) : 881-891. doi: 10.3934/nhm.2012.7.881

[7]

José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209

[8]

Nils Ackermann, Thomas Bartsch, Petr Kaplický. An invariant set generated by the domain topology for parabolic semiflows with small diffusion. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 613-626. doi: 10.3934/dcds.2007.18.613

[9]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, 2021, 29 (3) : 2269-2291. doi: 10.3934/era.2020116

[10]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[11]

Samir EL Mourchid. On a hypercylicity criterion for strongly continuous semigroups. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 271-275. doi: 10.3934/dcds.2005.13.271

[12]

Zhijing Chen, Yu Huang. Functional envelopes relative to the point-open topology on a subset. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1227-1246. doi: 10.3934/dcds.2017051

[13]

Natalia Ptitsyna, Stephen P. Shipman. A lattice model for resonance in open periodic waveguides. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 989-1020. doi: 10.3934/dcdss.2012.5.989

[14]

Michael Schönlein. Computation of open-loop inputs for uniformly ensemble controllable systems. Mathematical Control and Related Fields, 2022, 12 (3) : 813-829. doi: 10.3934/mcrf.2021046

[15]

Meng Qu, Jiayan Wu, Ting Zhang. Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2285-2300. doi: 10.3934/dcds.2020362

[16]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[17]

Christian Budde, Marjeta Kramar Fijavž. Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16 (4) : 553-567. doi: 10.3934/nhm.2021017

[18]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[19]

Aijun Zhang. Traveling wave solutions of periodic nonlocal Fisher-KPP equations with non-compact asymmetric kernel. Discrete and Continuous Dynamical Systems - S, 2022, 15 (10) : 3079-3095. doi: 10.3934/dcdss.2022061

[20]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (159)
  • HTML views (52)
  • Cited by (0)

Other articles
by authors

[Back to Top]