The aim of this paper is to study a double phase problem with nonlinear boundary condition of critical growth and with a superlinear right-hand side that does not satisfy the Ambrosetti-Rabinowitz condition. Based on an equivalent norm in the Musielak-Orlicz Sobolev space along with variational tools and critical point theory, we prove the existence of at least two nontrivial, bounded weak solutions.
Citation: |
[1] | G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the $p$-Laplacian, Arch. Math. (Basel), 80 (2003), 424-429. doi: 10.1007/s00013-003-0479-8. |
[2] | G. Bonanno and G. D'Aguì, On the Neumann problem for elliptic equations involving the $p$-Laplacian, J. Math. Anal. Appl., 358 (2009), 223-228. doi: 10.1016/j.jmaa.2009.04.055. |
[3] | G. Bonanno and G. D'Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449-464. doi: 10.4171/ZAA/1573. |
[4] | Á. Crespo-Blanco, L. Gasiński, P. Harjulehto and P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations, 323 (2022), 182-228. doi: 10.1016/j.jde.2022.03.029. |
[5] | Á. Crespo-Blanco, N. S. Papageorgiou and P. Winkert, Parametric superlinear double phase problems with singular term and critical growth on the boundary, Math. Methods Appl. Sci., 45 (2022), 2276-2298. doi: 10.1002/mma.7924. |
[6] | G. D'Aguì and A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal., 75 (2012), 5612-5619. doi: 10.1016/j.na.2012.05.009. |
[7] | G. D'Aguì, A. Sciammetta and E. Tornatore, Two nontrivial solutions for Robin problems driven by a $p$-Laplacian operator, Differential and difference equations with applications, Springer Proc. Math. Stat., 333 (2020), 195-206. doi: 10.1007/978-3-030-56323-3_16. |
[8] | S. El Manouni, G. Marino and P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the $p$-Laplacian, Adv. Nonlinear Anal., 11 (2022), 304-320. doi: 10.1515/anona-2020-0193. |
[9] | C. Farkas, A. Fiscella and P. Winkert, Singular Finsler double phase problems with nonlinear boundary condition, Adv. Nonlinear Stud., 21 (2021), 809-825. doi: 10.1515/ans-2021-2143. |
[10] | L. Gasiński and P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations, 274 (2021), 1037-1066. doi: 10.1016/j.jde.2020.11.014. |
[11] | U. Guarnotta, S. A. Marano and D. Motreanu, On a singular Robin problem with convection terms, Adv. Nonlinear Stud., 20 (2020), 895-909. doi: 10.1515/ans-2020-2093. |
[12] | W. Liu and G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations, 265 (2018), 4311-4334. doi: 10.1016/j.jde.2018.06.006. |
[13] | D. Motreanu, A. Sciammetta and E. Tornatore, A sub-supersolution approach for Neumann boundary value problems with gradient dependence, Nonlinear Anal. Real World Appl., 54 (2020), 103096, 12 pp. doi: 10.1016/j.nonrwa.2020.103096. |
[14] | N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. |
[15] | N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Existence and multiplicity of solutions for double-phase Robin problems, Bull. Lond. Math. Soc., 52 (2020), 546-560. doi: 10.1112/blms.12347. |
[16] | N. S. Papageorgiou, C. Vetro and F. Vetro, Solutions for parametric double phase Robin problems, Asymptot. Anal., 121 (2021), 159-170. doi: 10.3233/ASY-201598. |
[17] | N. S. Papageorgiou and P. Winkert, Applied Nonlinear Functional Analysis, De Gruyter, Berlin, 2018. |
[18] | N. S. Papageorgiou and P. Winkert, Solutions with sign information for nonlinear nonhomogeneous problems, Math. Nachr., 292 (2019), 871-891. doi: 10.1002/mana.201800083. |
[19] | G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353-372. doi: 10.1007/BF02418013. |
[20] | P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal., 12 (2013), 785-802. doi: 10.3934/cpaa.2013.12.785. |
[21] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. |