\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Nonexistence results for nonlinear fractional differential inequalities involving weighted fractional derivatives

  • *Corresponding author: Bessem Samet

    *Corresponding author: Bessem Samet
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • In this paper, we study the nonexistence of global solutions for certain classes of nonlinear fractional differential inequalities involving weighted fractional derivatives and a singular potential function. Namely, using the test function method with a judicious choice of the test function, we obtain sufficient criteria depending on the parameters of the considered problems, under which we have absence of global solutions. Next, some special cases of the potential function are discussed.

    Mathematics Subject Classification: Primary: 34K37, 34A08; Secondary: 35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Adolfsson and M. Enelund, Fractional derivative viscoelasticity at large deformations, Nonlinear Dyn., 33 (2003), 301-321.  doi: 10.1023/A:1026003130033.
    [2] O. P. Agrawal, Generalized multiparameters fractional variational calculus, Int. J. Differ. Equ., 2012 (2012), Art. ID 521750, 38 pp. doi: 10.1155/2012/521750.
    [3] O. P. Agarwal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700-711.  doi: 10.2478/s13540-012-0047-7.
    [4] S. Buonocore and F. Semperlotti, Tomographic imaging of non-local media based on space-fractional diffusion models, J. Appl. Phys., 123 (2018), Article 214902.
    [5] K. M. Furati and M. Kirane, Necessary conditions for the existence of global solutions to systems of fractional differential equations, Fract. Calc. Appl. Anal., 11 (2008), 281-298. 
    [6] M. D. KassimK. M. Furati and N.-E. Tatar, Nonexistence of global solutions for a fractional differential problem, J. Comput. Appl. Math., 314 (2017), 61-68.  doi: 10.1016/j.cam.2016.10.006.
    [7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol 204, Elsevier, Amsterdam, The Netherlands, 2006.
    [8] M. Kirane and S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations, Nonlinear Anal., 73 (2010), 3723-3736.  doi: 10.1016/j.na.2010.06.088.
    [9] V. V. Kulish and J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803-806. 
    [10] F. Mainardi, Fractional calculus in wave propagation problems, Forum der Berliner Mathematischer Gesellschaft, 19 (2011), 20-52. 
    [11] E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), 1-362. 
  • 加载中
SHARE

Article Metrics

HTML views(1854) PDF downloads(208) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return