We consider the initial value problem for a nonautonomous Cox-Ingersoll-Ross equation of the type
$ \begin{cases} \dfrac{\partial u}{\partial t} = \nu^2(t)\, x\, \dfrac{\partial^2 u}{\partial x^2} + (\gamma (t) + \beta (t)\, x)\, \dfrac{\partial u}{\partial x} - r(t)x\, u \\ u(0, x) = f(x), \end{cases} $
for
$ Y_s: = \left\{f:[0, \infty)\to \mathbb{C}:\, f \, continuous, \, \frac{f(x)}{1+x^s}\in X_0\right\}, \quad s\ge 0. $
We can replace
Citation: |
[1] |
H. Brezis, W. Rosenkrantz and B. Singer (with an Appendix by P. D. Lax), On a degenerate elliptic-parabolic equation occurring in the theory of probability, Comm. Pure Appl. Math., 24 (1971), 395-416.
doi: 10.1002/cpa.3160240305.![]() ![]() ![]() |
[2] |
J. C. Cox, J. E. Ingersoll and S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.
doi: 10.2307/1911242.![]() ![]() ![]() |
[3] |
W. G. Faris, Product formulas for perturbation of linear propagators, J. Funct. Anal., 1 (1967), 93-108.
![]() |
[4] |
S. Fornaro and G. Metafune, Analyticity of the Cox-Ingersoll-Ross semigroup, Positivity, 24 (2020), 915-931.
![]() |
[5] |
G. Ruiz Goldstein, J. A. Goldstein, R. M. Mininni and S. Romanelli, The semigroup governing the generalized Cox-Ingersoll-Ross equation, Adv. Differ. Equ., 21 (2016), 235-264.
![]() ![]() |
[6] |
G. R. Goldstein, J. A. Goldstein, R. M. Mininni and S. Romanelli, A generalized Cox-Ingersoll-Ross equation with growing initial conditions, Discrete Cont. Dyn. Systems S, 13 (2020), 1513-1528.
doi: 10.3934/dcdss.2020085.![]() ![]() ![]() |
[7] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, 2$^{nd}$ expanded edition, Dover Publications, New York, 2017.
![]() ![]() |
[8] |
J. A. Goldstein, R. M. Mininni and S. Romanelli, Markov semigroups and groups of operators, Commun. Stoch. Anal., 1 (2007), 247-262.
doi: 10.31390/cosa.1.2.05.![]() ![]() ![]() |
[9] |
T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan, 5 (1953), 208-234.
doi: 10.2969/jmsj/00520208.![]() ![]() ![]() |