In this paper, we investigate optimal control problems for a nonlinear state system which constitutes a version of the Caginalp phase field system modeling nonisothermal phase transitions with a nonconserved order parameter that takes thermal memory into account. The state system, which is a first-order approximation of a thermodynamically consistent system, is inspired by the theories developed by Green and Naghdi. It consists of two nonlinearly coupled partial differential equations that govern the phase dynamics and the universal balance law for internal energy, written in terms of the phase variable and the so-called thermal displacement, i.e., a primitive with respect to time of temperature. We extend recent results obtained for optimal control problems in which the free energy governing the phase transition was differentiable (i.e., of regular or logarithmic type) to the nonsmooth case of a double obstacle potential. As is well known, in this nondifferentiable case standard methods to establish the existence of appropriate Lagrange multipliers fail. This difficulty is overcome utilizing of the so-called deep quench approach. Namely, the double obstacle potential is approximated by a family of (differentiable) logarithmic ones for which the existence of optimal controls and first-order necessary conditions of optimality in terms of the adjoint state variables and a variational inequality are known. By proving appropriate bounds for the adjoint states of the approximating systems, we can pass to the limit in the corresponding first-order necessary conditions, thereby establishing meaningful first-order necessary optimality conditions also for the case of the double obstacle potential.
Citation: |
[1] |
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827.![]() ![]() ![]() |
[2] |
G. Canevari and P. Colli, Solvability and asymptotic analysis of a generalization of the Caginalp phase field system, Commun. Pure Appl. Anal., 11 (2012), 1959-1982.
doi: 10.3934/cpaa.2012.11.1959.![]() ![]() ![]() |
[3] |
G. Canevari and P. Colli, Convergence properties for a generalization of the Caginalp phase field system, Asymptot. Anal., 82 (2013), 139-162.
doi: 10.3233/ASY-2012-1142.![]() ![]() ![]() |
[4] |
P. Colli, M. H. Farshbaf-Shaker, G. Gilardi and J. Sprekels, Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim., 53 (2015), 2696-2721.
doi: 10.1137/140984749.![]() ![]() ![]() |
[5] |
P. Colli, M. H. Farshbaf-Shaker and J. Sprekels, A deep quench approach to the optimal control of an Allen–Cahn equation with dynamic boundary conditions and double obstacles, Appl. Math. Optim., 71 (2015), 1-24.
doi: 10.1007/s00245-014-9250-8.![]() ![]() ![]() |
[6] |
P. Colli and G. Gilardi, Well-posedness, regularity and asymptotic analyses for a fractional phase field system, Asymptot. Anal., 114 (2019), 93-128.
doi: 10.3233/ASY-191524.![]() ![]() ![]() |
[7] |
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112.
doi: 10.3934/mcrf.2016.6.95.![]() ![]() ![]() |
[8] |
P. Colli, G. Gilardi and J. Sprekels, Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential, Evol. Equ. Control Theory, 6 (2017), 35-58.
doi: 10.3934/eect.2017003.![]() ![]() ![]() |
[9] |
P. Colli, G. Gilardi and J. Sprekels, Optimal velocity control of a convective Cahn–Hilliard system with double obstacles and dynamic boundary conditions: A 'deep quench' approach, J. Convex Anal., 26 (2019), 485-514.
![]() ![]() |
[10] |
P. Colli, G. Gilardi and J. Sprekels, A distributed control problem for a fractional tumor growth model, Mathematics, 7 (2019), 792.
doi: 10.3233/ASY-191578.![]() ![]() ![]() |
[11] |
P. Colli, G. Gilardi and J. Sprekels, Optimal control of a phase field system of Caginalp type with fractional operators, Pure Appl. Funct. Anal., 7 (2022), 1597-1635.
![]() ![]() |
[12] |
P. Colli, G. Gilardi and J. Sprekels, Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 243-271.
doi: 10.3934/dcdss.2020213.![]() ![]() ![]() |
[13] |
P. Colli, A. Signori and J. Sprekels, Analysis and optimal control theory for a phase field model of Caginalp type with thermal memory, Commun. Optim. Theory, 4 (2022).
![]() |
[14] |
M. Conti, F. Dell'Oro and A. Miranville, Asymptotic behavior of a generalization of the Caginalp phase-field system, Asymptot. Anal., 81 (2013), 297-314.
doi: 10.3233/ASY-2012-1129.![]() ![]() ![]() |
[15] |
M. Conti, S. Gatti and A. Miranville, A generalization of the Caginalp phase-field system with Neumann boundary conditions, Nonlinear Anal., 87 (2013), 11-21.
doi: 10.1016/j.na.2013.03.016.![]() ![]() ![]() |
[16] |
A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. London Ser. A, 432 (1991), 171-194.
doi: 10.1098/rspa.1991.0012.![]() ![]() ![]() |
[17] |
A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253-264.
doi: 10.1080/01495739208946136.![]() ![]() ![]() |
[18] |
A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189-208.
doi: 10.1007/BF00044969.![]() ![]() ![]() |
[19] |
K.-H. Hoffmann and L. Jiang, Optimal control problem of a phase field model for solidification, Numer. Funct. Anal. Optim., 13 (1992), 11-27.
doi: 10.1080/01630569208816458.![]() ![]() ![]() |
[20] |
C. Lefter and J. Sprekels, Control of a phase field system modeling non-isothermal phase transitions, Adv. Math. Sci. Appl., 17 (2007), 181-194.
![]() ![]() |
[21] |
J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod Gauthier-Villars, Paris, 1969.
![]() ![]() |
[22] |
A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal. Real World Appl., 11 (2010), 2849-2861.
doi: 10.1016/j.nonrwa.2009.10.008.![]() ![]() ![]() |
[23] |
P. Podio-Guidugli, A virtual power format for thermomechanics, Contin. Mech. Thermodyn., 20 (2009), 479-487.
doi: 10.1007/s00161-009-0093-5.![]() ![]() ![]() |
[24] |
A. Signori, Optimality conditions for an extended tumor growth model with double obstacle potential via deep quench approach, Evol. Equ. Control Theory, 9 (2020), 193-217.
doi: 10.3934/eect.2020003.![]() ![]() ![]() |
[25] |
J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[26] |
F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Grad. Stud. in Math. 112, AMS, Providence, RI, 2010.
doi: 10.1090/gsm/112.![]() ![]() ![]() |