We study the regularized MGT equation
$ u_{ttt} + \alpha u_{tt} +\beta Au_t +\gamma A u +\delta A u_{tt} = 0 $
where $ A $ is a strictly positive unbounded operator and $ \alpha, \beta, \gamma, \delta>0 $. The effect of the regularizing term $ \delta A u_{tt} $ translates into having an analytic semigroup $ S(t) = e^{t{{\mathbb A}}} $ of solutions. Moreover, the asymptotic properties of the semigroup are ruled by the stability number
$ \varkappa = \beta - \frac{\gamma}{\alpha +\delta \lambda_0} $
which, contrary to the case of the standard MGT equation, depends also on the minimum $ \lambda_0>0 $ of the spectrum of $ A $.
Citation: |
[1] |
C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1949), 83-101.
![]() ![]() |
[2] |
C. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, 247 (1958), 431-433.
![]() ![]() |
[3] |
W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1964), 44-64.
![]() |
[4] |
B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.
doi: 10.1007/BF01596912.![]() ![]() ![]() |
[5] |
M. Conti, F. Dell'Oro, L. Liverani and V. Pata, Spectral analysis and stability of the Moore-Gibson-Thompson-Fourier model, J. Dynam. Differential Equations, (in press).
![]() |
[6] |
M. Conti, V. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.
doi: 10.3233/ASY-191576.![]() ![]() ![]() |
[7] |
F. Dell'Oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.
doi: 10.1007/s00245-016-9365-1.![]() ![]() ![]() |
[8] |
F. Dell'Oro and V. Pata, A hierarchy of heat conduction laws, Discrete Contin. Dyn. Syst. Ser. S, (in press).
![]() |
[9] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
![]() ![]() |
[10] |
L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.
doi: 10.1090/S0002-9947-1978-0461206-1.![]() ![]() ![]() |
[11] |
P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2189-2205.
doi: 10.3934/dcdsb.2014.19.2189.![]() ![]() ![]() |
[12] |
B. Kaltenbacher, I. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988.
![]() ![]() |
[13] |
B. Kaltenbacher, I. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1250035, 34 pp.
doi: 10.1142/S0218202512500352.![]() ![]() ![]() |
[14] |
I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Cambridge University Press, Cambridge, 2000.
![]() ![]() |
[15] |
Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999.
![]() ![]() |
[16] |
R. Marchand, T. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.
doi: 10.1002/mma.1576.![]() ![]() ![]() |
[17] |
F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerospace Sci., 27 (1960), 117-127.
doi: 10.2514/8.8418.![]() ![]() |
[18] |
R. Nittka, Three-Line Proofs, Ulmer Seminare Volume 16, Ulm University, 2011.
![]() |
[19] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.![]() ![]() ![]() |
[20] |
J. Prüss, On the spectrum of $\text{C}_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.
doi: 10.1090/S0002-9947-1984-0743749-9.![]() ![]() ![]() |
[21] |
G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, Philos. Mag. Series 4, 1 (1851), 305-317.
![]() |
[22] |
P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972.
![]() |
Spectrum of
Spectrum of