\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the regularized Moore-Gibson-Thompson equation

  • *Corresponding author: Vittorino Pata

    *Corresponding author: Vittorino Pata

In memory of Professor Gunduz Caginalp

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • We study the regularized MGT equation

    $ u_{ttt} + \alpha u_{tt} +\beta Au_t +\gamma A u +\delta A u_{tt} = 0 $

    where $ A $ is a strictly positive unbounded operator and $ \alpha, \beta, \gamma, \delta>0 $. The effect of the regularizing term $ \delta A u_{tt} $ translates into having an analytic semigroup $ S(t) = e^{t{{\mathbb A}}} $ of solutions. Moreover, the asymptotic properties of the semigroup are ruled by the stability number

    $ \varkappa = \beta - \frac{\gamma}{\alpha +\delta \lambda_0} $

    which, contrary to the case of the standard MGT equation, depends also on the minimum $ \lambda_0>0 $ of the spectrum of $ A $.

    Mathematics Subject Classification: Primary: 35B35, 35G05, 35Q79, 47D06; Secondary: 76N15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Spectrum of $ {{\mathbb A}} $ (in red) for $ \delta = 0.3 $ (left) and $ \delta = 0.1 $ (right)

    Figure 2.  Spectrum of $ {{\mathbb A}} $ (in red) for $ \delta = 0.01 $ (left) and $ \delta = 0 $ (right)

  • [1] C. Cattaneo, Sulla conduzione del calore, Atti Sem. Mat. Fis. Univ. Modena, 3 (1949), 83-101. 
    [2] C. Cattaneo, Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, 247 (1958), 431-433. 
    [3] W. Chester, Resonant oscillations in closed tubes, J. Fluid Mech., 18 (1964), 44-64. 
    [4] B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.
    [5] M. Conti, F. Dell'Oro, L. Liverani and V. Pata, Spectral analysis and stability of the Moore-Gibson-Thompson-Fourier model, J. Dynam. Differential Equations, (in press).
    [6] M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/ASY-191576.
    [7] F. Dell'Oro and V. Pata, On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity, Appl. Math. Optim., 76 (2017), 641-655.  doi: 10.1007/s00245-016-9365-1.
    [8] F. Dell'Oro and V. Pata, A hierarchy of heat conduction laws, Discrete Contin. Dyn. Syst. Ser. S, (in press).
    [9] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
    [10] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 236 (1978), 385-394.  doi: 10.1090/S0002-9947-1978-0461206-1.
    [11] P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2189-2205.  doi: 10.3934/dcdsb.2014.19.2189.
    [12] B. KaltenbacherI. Lasiecka and R. Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Control Cybernet., 40 (2011), 971-988. 
    [13] B. Kaltenbacher, I. Lasiecka and M. K. Pospieszalska, Well-posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Math. Models Methods Appl. Sci., 22 (2012), 1250035, 34 pp. doi: 10.1142/S0218202512500352.
    [14] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Cambridge University Press, Cambridge, 2000.
    [15] Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC, Boca Raton, 1999.
    [16] R. MarchandT. McDevitt and R. Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Math. Methods Appl. Sci., 35 (2012), 1896-1929.  doi: 10.1002/mma.1576.
    [17] F. K. Moore and W. E. Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, J. Aerospace Sci., 27 (1960), 117-127.  doi: 10.2514/8.8418.
    [18] R. Nittka, Three-Line Proofs, Ulmer Seminare Volume 16, Ulm University, 2011.
    [19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [20] J. Prüss, On the spectrum of $\text{C}_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.1090/S0002-9947-1984-0743749-9.
    [21] G. G. Stokes, An examination of the possible effect of the radiation of heat on the propagation of sound, Philos. Mag. Series 4, 1 (1851), 305-317. 
    [22] P. A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, 1972.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(1908) PDF downloads(292) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return