[1]
|
O. Alagoz, A. K. Sethi, B. W. Patterson, M. Churpek, G. Alhanaee, E. Scaria, et al., The impact of vaccination to control COVID-19 burden in the United States: A simulation modeling approach, PLoS One, 16 (2021), e0254456.
doi: 10.1371/journal.pone.0254456.
|
[2]
|
E. Allen, Modeling with Ito Stochastic Differential Equations, Springer Science and Business Media, Berlin, 2007.
|
[3]
|
E. Allen, Environmental variability and mean-reverting processes, Discrete Continuous Dyn. Syst. Ser. B., 21 (2016), 2073-2089.
doi: 10.3934/dcdsb.2016037.
|
[4]
|
E. J. Allen, L. J. S. Allen, A. Arciniega and P. E. Greenwood, Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl., 26 (2008), 274-297.
doi: 10.1080/07362990701857129.
|
[5]
|
E. J. Allen, L. J. S. Allen and H. L. Smith, On real-valued SDE and nonnegative-valued SDE population models with demographic variability, J. Math. Biol., 81 (2020), 487-515.
doi: 10.1007/s00285-020-01516-8.
|
[6]
|
L. J. S. Allen and X. Wang, Stochastic models of infectious diseases in a periodic environment with application to cholera epidemics, J. Math. Biol., 82 (2021), Paper No. 48, 26 pp.
doi: 10.1007/s00285-021-01603-4.
|
[7]
|
A. J. Arenas, G. González-Parra and J. A. Moraño, Stochastic modeling of the transmission of respiratory syncytial virus (RSV) in the region of Valencia, Spain, Biosystems, 96 (2009), 206-212.
doi: 10.1016/j.biosystems.2009.01.007.
|
[8]
|
E. Aruffo, P. Yuan, Y. Tan, E. Gatov, E. Gournis, S. Collier, et al., Community structured model for vaccine strategies to control COVID19 spread: A mathematical study, PLoS One, 17 (2022), e0258648.
doi: 10.1371/journal.pone.0258648.
|
[9]
|
E. Aruffo, P. Yuan, Y. Tan, E. Gatov, I. Moyles, J. Bélair, et al., Mathematical modelling of vaccination rollout and NPIs lifting on COVID-19 transmission with VOC: A case study in Toronto, BMC Public Health, 22 (2022), Article number: 1349, 12 pp.
doi: 10.1186/s12889-022-13597-9.
|
[10]
|
J. Cao, X. Hu, W. Cheng, L. Yu, W.-J. Tu and Q. Liu, Clinical features and short-term outcomes of 18 patients with corona virus disease 2019 in intensive care unit, Intensive Care Med., 46 (2020), 851-853.
doi: 10.1007/s00134-020-05987-7.
|
[11]
|
C. Carvalho-Schneider, E. Laurent, A. Lemaignen, E. Beaufils, C. Bourbao-Tournois, S. Laribi, et al., Follow-up of adults with noncritical COVID-19 two months after symptom onset, Clin. Microbiol. Infect., 27 (2021), 258-263.
doi: 10.1016/j.cmi.2020.09.052.
|
[12]
|
B. Cazelles, C. Champagne, B. Nguyen-Van-Yen, C. Comiskey, E. Vergu and B. Roche, A mechanistic and data-driven reconstruction of the time-varying reproduction number: Application to the COVID-19 epidemic, PLoS Comput. Biol., 17 (2021), e1009211.
doi: 10.1371/journal.pcbi.1009211.
|
[13]
|
A. L. Chanu and R. K. B. Singh, Stochastic approach to study control strategies of COVID-19 pandemic in India, Epidemiol. Infect., 148 (2020), e200.
doi: 10.1017/S0950268820001946.
|
[14]
|
P. Czuppon, E. Schertzer, F. Blanquart and F. Débarre, The stochastic dynamics of early epidemics: Probability of establishment, initial growth rate, and infection cluster size at first detection, J. R. Soc. Interface, 18 (2021), 20210575.
doi: 10.1098/rsif.2021.0575.
|
[15]
|
A. Danielle Iuliano, J. M. Brunkard, T. K. Boehmer, E. Peterson, S. Adjei, A. M. Binder, et al., Trends in disease severity and health care utilization during the early Omicron variant period compared with previous SARS-CoV-2 high transmission periods—United States, December 2020–January 2022, Morb. Mortal. Wkly. Rep., 71 (2022), 146-152.
doi: 10.15585/mmwr.mm7104e4.
|
[16]
|
G. Giordano, M. Colaneri, A. Di Filippo, F. Blanchini, P. Bolzern, G. De Nicolao, et al., Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy, Nat. Med., 27 (2021), 993-998.
doi: 10.1038/s41591-021-01334-5.
|
[17]
|
Y. Goldberg, M. Mandel, Y. M. Bar-On, O. Bodenheimer, L. Freedman, E. J. Haas, et al., Waning immunity after the BNT162b2 vaccine in Israel, N. Engl. J. Med., 385 (2021), e85.
doi: 10.1056/NEJMoa2114228.
|
[18]
|
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.
doi: 10.1137/10081856X.
|
[19]
|
S. He, Y. Peng and K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dynamics, 101 (2020), 1667-1680.
doi: 10.1007/s11071-020-05743-y.
|
[20]
|
X. Hou, S. Gao, Q. Li, Y. Kang, N. Chen, K. Chen, et al., Intracounty modeling of COVID-19 infection with human mobility: Assessing spatial heterogeneity with business traffic, age, and race, Proc. Natl. Acad. Sci. U. S. A., 118 (2021), e2020524118.
doi: 10.1073/pnas.2020524118.
|
[21]
|
G. Hussain, T. Khan, A. Khan, M. Inc, G. Zaman, K. S. Nisar, et al., Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Alex. Eng. J., 60 (2021), 4121-4130.
doi: 10.1016/j.aej.2021.02.036.
|
[22]
|
L. Jansen, B. Tegomoh, K. Lange, K. Showalter, J. Figliomeni, B. Abdalhamid, et al., Investigation of a SARS-CoV-2 B. 1.1. 529 (omicron) variant cluster—Nebraska, November–December 2021, Morb. Mortal. Wkly. Rep., 70 (2021), 1782-1784.
doi: 10.15585/mmwr.mm705152e3.
|
[23]
|
M. Kang, H. Xin, J. Yuan, S. T. Ali, Z. Liang, J. Zhang, et al., Transmission dynamics and epidemiological characteristics of SARS-CoV-2 Delta variant infections in Guangdong, China, May to June 2021, Eurosurveillance, 27 (2022), 2100815.
doi: 10.2807/1560-7917.ES.2022.27.10.2100815.
|
[24]
|
A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558.
doi: 10.1016/S1473-3099(20)30144-4.
|
[25]
|
S. Lambert, P. Ezanno, M. Garel and E. Gilot-Fromont, Demographic stochasticity drives epidemiological patterns in wildlife with implications for diseases and population management, Sci. Rep., 8 (2018), Article number: 16846, 14 pp.
doi: 10.1038/s41598-018-34623-0.
|
[26]
|
E. G. Levin, Y. Lustig, C. Cohen, R. Fluss, V. Indenbaum, S. Amit, et al., Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months, N. Engl. J. Med., 385 (2021), e84.
doi: 10.1056/NEJMoa2114583.
|
[27]
|
L. G. McCoy, J. Smith, K. Anchuri, I. Berry, J. Pineda, V. Harish, et al., Characterizing early Canadian federal, provincial, territorial and municipal nonpharmaceutical interventions in response to COVID-19: A descriptive analysis, Can. Med. Assoc. J., 8 (2020), E545-E553.
doi: 10.9778/cmajo.20200100.
|
[28]
|
D. Nino-Torres, A. Ríos-Gutiérrez, V. Arunachalam, C. Ohajunwa and P. Seshaiyer, Stochastic modeling, analysis, and simulation of the COVID-19 pandemic with explicit behavioral changes in Bogotá: A case study, Infect. Dis. Model., 7 (2022), 199-211.
doi: 10.1016/j.idm.2021.12.008.
|
[29]
|
K. F. Nipa, S. R.-J. Jang and L. J. S. Allen, The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population, Math. Biosci., 331 (2021), 108516, Paper No. 108516, 18 pp.
doi: 10.1016/j.mbs.2020.108516.
|
[30]
|
O. M. Otunuga, Time-dependent probability distribution for number of infection in a stochastic SIS model: Case study COVID-19, Chaos Solit. Fractals, 147 (2021), 110983, 20 pp.
doi: 10.1016/j.chaos.2021.110983.
|
[31]
|
O. M. Otunuga and M. O. Ogunsolu, Qualitative analysis of a stochastic SEITR epidemic model with multiple stages of infection and treatment, Infect. Dis. Model., 5 (2020), 61-90.
doi: 10.1016/j.idm.2019.12.003.
|
[32]
|
U. Picchini, Inference for SDE models via approximate Bayesian computation, J. Comput. Graph. Stat., 23 (2014), 1080-1100.
doi: 10.1080/10618600.2013.866048.
|
[33]
|
L. Pinky, G. Gonzalez-Parra and H. M. Dobrovolny, Effect of stochasticity on coinfection dynamics of respiratory viruses, BMC Bioinform., 20 (2019), Article number: 191, 12 pp.
doi: 10.1186/s12859-019-2793-6.
|
[34]
|
N. Shakiba, C. J. Edholm, B. O. Emerenini, A. L. Murillo, A. Peace, O. Saucedo, et al., Effects of environmental variability on superspreading transmission events in stochastic epidemic models, Infect. Dis. Model., 6 (2021), 560-583.
doi: 10.1016/j.idm.2021.03.001.
|
[35]
|
A. K. Srivastav, P. K. Tiwari, P. K. Srivastava, M. Ghosh and Y. Kang, A mathematical model for the impacts of face mask, hospitalization and quarantine on the dynamics of COVID-19 in India: Deterministic vs. stochastic, Math. Biosci. Eng., 18 (2021), 182-213.
doi: 10.3934/mbe.2021010.
|
[36]
|
S. Y. Tartof, J. M. Slezak, L. Puzniak, V. Hong, T. B. Frankland, B. K. Ackerson, et al., Effectiveness of a third dose of BNT162b2 mRNA COVID-19 vaccine in a large US health system: A retrospective cohort study, Lancet Reg. Health-Am., 9 (2022), 100198.
doi: 10.1016/j.lana.2022.100198.
|
[37]
|
J. Thaker and S. Ganchoudhuri, The role of attitudes, norms, and efficacy on shifting COVID-19 vaccine Intentions: A longitudinal study of COVID-19 vaccination intentions in New Zealand, Vaccines, 9 (2021), 1132.
doi: 10.3390/vaccines9101132.
|
[38]
|
G. T. Tilahun, S. Demie and A. Eyob, Stochastic model of measles transmission dynamics with double dose vaccination, Infect. Dis. Model., 5 (2020), 478-494.
doi: 10.1016/j.idm.2020.06.003.
|
[39]
|
Vaccine Hesitancy Plunges to Three per cent, but One-tenth of Population Remain Unwilling to be Jabbed, Angusreid Institute, 2021. Available from: https://angusreid.org/canada-astrazeneca-herd-immunity/.
|
[40]
|
Changing Attitudes to Vaccination after the Covid-19 Pandemic Could Increase Adult Vaccination Rates, Improving Health Outcomes over the Longer Term, GSK, 2021. Available from: https://www.gsk.com/en-gb/media/press-releases/changing-attitudes-to-vaccination-after-the-covid-19-pandemic-could-increase-adult-vaccination-rates-improving-health-outcomes-over-the-longer-term/.
|
[41]
|
Covid-19: Monitoring Dashboard Share, City of Toronto, 2022. Available from: https://www.toronto.ca/home/covid-19/covid-19-pandemic-data/covid-19-monitoring-dashboard-data/.
|
[42]
|
Ontario Now Distinguishing between People Admitted to Hospital 'with' or 'for' COVID-19, Cp24, 2022. Available from: https://www.cp24.com/news/ontario-now-distinguishing-between-people-admitted-to-hospital-with-or-for-covid-19-1.5736010?cache = %2F7.381763.
|
[43]
|
Matlab for Artificial Intelligence, Math Works, 2022. Available from: https://www.mathworks.com.
|
[44]
|
Datagraph, Datagraph, 2022. Available from: https://www.visualdatatools.com/DataGraph/.
|
[45]
|
Ontario to Drop Most Mask Mandates on March 21, 2022, all Measures on April 27, DLA Piper, 2022. Available from: https://www.dlapiper.com/en-ca/insights/publications/2022/03/ontario-to-drop-mask-mandates.
|
[46]
|
Here's a Look at Ontario's Timeline for Lifting all COVID Measures by April 27, Toronto Star, 2022. Available from: https://www.thestar.com/news/canada/2022/03/09/heres-a-look-at-ontarios-timeline-for-lifting-all-covid-measures-by-april-27.html.
|
[47]
|
Use of Masks to Control the Spread of SARS-CoV-2, Centers for Disease Control and Prevention, 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/masking-science-sars-cov2.html.
|
[48]
|
2021 Census: Population and Dwelling Counts, City of Toronto, 2022. Available from: https://www.toronto.ca/wp-content/uploads/2022/02/92e3-City-Planning-2021-Census-Backgrounder-Population-Dwellings-Backgrounder.pdf.
|
[49]
|
Covid-19 Cases with Lineage b.1.1.529 (omicron) or S-Gene Target Failure (sgtf) in Ontario: October 31, 2021 to December 29, 2021. 2022, Government of Ontario, 2022. Available from: https://www.publichealthontario.ca/-/media/documents/ncov/epi/covid-19-omicron-weekly-epi-summary.pdf?sc_lang = en.
|
[50]
|
P. Yuan, E. Aruffo, E. Gatov, Y. Tan, Q. Li, N. Ogden, et al., School and community reopening during the COVID-19 pandemic: A mathematical modelling study, R. Soc. Open Sci., 9 (2022), 211883.
doi: 10.1098/rsos.211883.
|
[51]
|
P. Yuan, E. Aruffo, Y. Tan, L. Yang, N. H. Ogden, A. Fazil and H. Zhu, Projections of the transmission of the Omicron variant for Toronto, Ontario, and Canada using surveillance data following recent changes in testing policies, Infect. Dis. Model., 7 (2022), 83-93.
doi: 10.1016/j.idm.2022.03.004.
|
[52]
|
P. Yuan, J. Li, E. Aruffo, E. Gatov, Q. Li, T. Zheng, et al., Efficacy of 'Stay-at-Home' policy and transmission of COVID-19 in Toronto, CMAJ Open, 10 (2022), E367-E378.
doi: 10.9778/cmajo.20200242.
|