We study some geometric aspects of the higher order mean curvatures (or, more simply, the so-called $ r $-th mean curvatures) of a spacelike hypersurface immersed in a pp-wave spacetime, namely, in a connected Lorentzian manifold admitting a parallel and lightlike vector field. Initially, we develop general Minkowski-type integral formulas for compact (without boundary) spacelike hypersurfaces and we apply them to the study of the uniqueness and nonexistence of compact spacelike hypersurfaces in terms of their $ r $-mean curvatures. Next, we obtain a characterization of $ r $-stability for $ r $-maximal compact spacelike hypersurfaces through of the analysis of the first nonzero eigenvalue of an differential operator naturally attached to the $ r $-th mean curvature. For the noncompact case, by applying new forms of maximum principles on complete noncompact Riemannian manifolds due to Caminha [17] and Alías, Caminha and Nascimento [3], we obtain sufficient geometric conditions involving some $ r $-th mean curvature and the volume growth that allow us to establish some nonexistence results or to guarantee that a complete noncompact spacelike hypersurface is either totally geodesic, or totally umbilical, or maximal, or $ r $-maximal. We also obtain estimates for the index of minimum relative nullity of spacelike hypersurfaces.
Citation: |
[1] | A. L. Albujer, F. E. C. Camargo and H. F. de Lima, Complete spacelike hypersurfaces in a Robertson-Walker spacetime, Math. Proc. Cambridge Philos. Soc., 151 (2011), 271-282. doi: 10.1017/S0305004111000351. |
[2] | L. J. Alías, A. Brasil Jr and A. G. Colares, Integral formulae for Spacelike Hypersurfaces in Conformally Stationary Spacetimes and Applications, Proc. Edinburgh Math. Soc., 46 (2003), 465-488. doi: 10.1017/S0013091502000500. |
[3] | L. J. Alías, A. Caminha and F. Y. do Nascimento, A maximum principle related to volume growth and applications, Ann. Mat. Pura Appl., 200 (2021), 1637-1650. doi: 10.1007/s10231-020-01051-9. |
[4] | L. J. Alías and A. G. Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge Phil. Soc., 143 (2007), 703-729. doi: 10.1017/S0305004107000576. |
[5] | L. J. Alías, D. Impera and M. Rigoli, Spacelike hypersurfaces of constant higher order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc. Cambridge Phil. Soc., 152 (2012), 365-383. doi: 10.1017/S0305004111000697. |
[6] | L. J. Alías, A. Romero and M. Sánchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relat. Grav., 27 (1995), 71-84. doi: 10.1007/BF02105675. |
[7] | C. P. Aquino, M. Batista and H. F. de Lima, On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form, J. Geom. Phys., 137 (2019), 228-236. doi: 10.1016/j.geomphys.2018.12.006. |
[8] | C. P. Aquino, H. F. de Lima and M. A. L. Velásquez, Characterizations of linear Weingarten spacelike hypersurfaces in Lorentz space forms, Rocky Mountain J. Math., 45 (2015), 13-27. doi: 10.1216/RMJ-2015-45-1-13. |
[9] | J. L. M. Barbosa and V. Oliker, Spacelike hypersurfaces with constant mean curvature in Lorentz space, Mat. Contemp., 4 (1993), 27-44. |
[10] | S. Bernstein, Sur un théorème de géométrie et ses applications aux équations aux dérivées partielles du type elliptique, Comm. Soc. Math. Kharkov, 15 (1915), 38-45. |
[11] | H. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann., 94 (1925), 119-145. doi: 10.1007/BF01208647. |
[12] | M. Caballero, A. Romero and R. M. Rubio, Uniqueness of maximal surfaces in generalized Robertson-Walker spacetimes and Calabi-Bernstein type problems, J. Geom. Phys., 60 (2010), 394-402. doi: 10.1016/j.geomphys.2009.11.008. |
[13] | M. Caballero, A. Romero and R. M. Rubio, Complete cmc spacelike surfaces with bounded hyperbolic angle in generalized Robertson-Walker spacetimes, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 961-978. doi: 10.1142/S0219887810004658. |
[14] | E. Calabi, Examples of Bernstein problems for some nonlinear equations, in:, Global Analysis $($Proc. Sympos. Pure Math., Vol. XV, Berkeley, CA, 1968), Amer. Math. Soc., Providence, RI, 1970,223-230. doi: 10.1090/pspum/015/0264210. |
[15] | F. Camargo, A. Caminha, M. da Silva and H. de Lima, On the $r$-stability of spacelike hypersurfaces, J. Geom. Phys., 60 (2010), 1402-1410. doi: 10.1016/j.geomphys.2010.05.004. |
[16] | A. Caminha, A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds, Diff. Geom. Appl., 24 (2006), 652-659. doi: 10.1016/j.difgeo.2006.04.004. |
[17] | A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces, Bull. Brazilian Math. Soc., 42 (2011), 277-300. doi: 10.1007/s00574-011-0015-6. |
[18] | S.-Y. Cheng and S.-T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 104 (1976), 407-419. doi: 10.2307/1970963. |
[19] | S.-Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204. doi: 10.1007/BF01425237. |
[20] | A. G. Colares, E. L. de Lima and H. F. de Lima, Generalized linear Weingarten spacelike hypersurfaces in GRW spacetimes: Height estimates and half-space theorems, Mediterr. J. Math., 18 (2021), 264. doi: 10.1007/s00009-021-01884-5. |
[21] | M. Dajczer, Submanifolds and Isometric Immersions, Publish or Perish, Houston, 1990. |
[22] | E. L. de Lima, A note on compact Weingarten hypersurfaces embedded in $\mathbb{R}^{n+1}$, Arch. Math., 111 (2018), 669-672. doi: 10.1007/s00013-018-1233-6. |
[23] | H. F. de Lima and U. L. Parente, On the geometry of maximal spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime, Ann. Mat. Pure Appl., 192 (2013), 649-663. doi: 10.1007/s10231-011-0241-y. |
[24] | H. F. de Lima and M. A. L. Velásquez, On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space, Bull. Brazilian Math. Soc., 44 (2013), 1-17. |
[25] | H. F. de Lima and M. A. L. Velásquez, On the totally geodesic spacelike hypersurfaces in conformally stationary spacetimes, Osaka J. Math., 51 (2014), 1027-1052. |
[26] | H. F. de Lima and M. A. L. Velásquez, Uniqueness of complete spacelike hypersurfaces via their higher order mean curvatures in a conformally stationary spacetime, Math. Nachr., 287 (2014), 1223-1240. doi: 10.1002/mana.201200341. |
[27] | A. Einstein and N. Rosen, On gravitational waves, J. Franklin Inst., 223 (1937), 43-54. doi: 10.1016/S0016-0032(37)90583-0. |
[28] | D. Ferus, On the completeness of nullity foliations, Mich. Math. J., 18 (1971), 61-64. doi: 10.1307/mmj/1029000589. |
[29] | L. Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech., 8 (1959), 957-965. doi: 10.1512/iumj.1959.8.58061. |
[30] | J. N. Gomes, H. F. de Lima, F. R. dos Santos and M. A. L. Velásquez, On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms, J. Math. Anal. Appl., 418 (2014), 248-263. doi: 10.1016/j.jmaa.2014.03.090. |
[31] | J. Hounie and M. L. Leite, The maximum principle for hypersurfaces with vanishing curvature functions, J. Diff. Geom., 41 (1995), 247-258. doi: 10.4310/jdg/1214456216. |
[32] | J. Hounie and M. L. Leite, Two-ended hypersurfaces with zero scalar curvature, Ind. Univ. Math. J., 48 (1999), 867-882. doi: 10.1512/iumj.1999.48.1664. |
[33] | C.-C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand., 2 (1954), 286-294. doi: 10.7146/math.scand.a-10415. |
[34] | J. E. Marsden and F. J. Tipler, Maximal hypersurfaces and foliations of constant mean curvature in general relativity, Phys. Rep., 66 (1980), 109-139. doi: 10.1016/0370-1573(80)90154-4. |
[35] | S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Ind. Univ. Math. J., 48 (1999), 711-748. doi: 10.1512/iumj.1999.48.1562. |
[36] | S. Montiel and A. Ros, Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures, In: B. Lawson, K. Tenenblat Eds., Differential Geometry, Longman (1991), 279-296. |
[37] | B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983. |
[38] | F. J. Palomo, J. A. S. Pelegrín and A. Romero, Rigidity results for complete spacelike submanifolds in plane fronted waves, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116 (2022), Paper No. 179, 10 pp. doi: 10.1007/s13398-022-01315-4. |
[39] | J. A. S. Pelegrín, A. Romero and R. M. Rubio, On maximal hypersurfaces in Lorentz manifolds admitting a parallel lightlike vector field, Class. Quantum Grav., 33 (2016), 055003, 8 pp. doi: 10.1088/0264-9381/33/5/055003. |
[40] | R. C. Reilly, Variational properties of functions of the mean curvature for hypersurfaces in space form, J. Diff. Geom., 8 (1973), 465-477. doi: 10.4310/jdg/1214431802. |
[41] | A. Romero, Constant mean curvature spacelike hypersurfaces in spacetimes with certain causal symmetries, 20th IWHSS, Daegu Korea 2016, Springer Proc. Math. Stat., 203 (2017), 1-15. doi: 10.1007/978-981-10-5556-0_1. |
[42] | A. Romero and R. M. Rubio, On the mean curvature of spacelike surfaces in certain three-dimensional Robertson-Walker spacetimes and Calabi-Bernstein's type problems, Ann. Glob. Anal. Geom., 37 (2010), 21-31. doi: 10.1007/s10455-009-9171-y. |
[43] | A. Romero, R. M. Rubio and J. J. Salamanca, Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes, Class. Quantum Grav., 30 (2013), 115007, 13 pp. doi: 10.1088/0264-9381/30/11/115007. |
[44] | R. K. Sachs and H. H. Wu, General Relativity for Mathematicians, Graduate Texts in Mathematics 48, Springer, New York, 1977. doi: 10.1007/978-1-4612-9903-5. |
[45] | H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaersand and E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511535185. |
[46] | S. M. Stumbles, Hypersurfaces of constant mean curvature, Ann. Phys., 133 (1981), 28-56. doi: 10.1016/0003-4916(81)90240-2. |
[47] | M. A. L. Velásquez and H. F. de Lima, Complete spacelike hypersurfaces immersed in pp-wave spacetimes, Gen. Relativ. Gravit., 52 (2020), Paper No. 41, 18 pp. doi: 10.1007/s10714-020-02692-0. |
[48] | M. A. L. Velásquez, H. F. de Lima and J. H. H. de Lacerda, Spacelike mean curvature flow solitons, polynomial volume growth and stochastic completeness of spacelike hypersurfaces immersed into pp-wave spacetimes, Collect. Math., (2022). doi: 10.1007/s13348-022-00384-3. |
[49] | S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659-670. doi: 10.1512/iumj.1976.25.25051. |