We use free energy lattice Boltzmann methods to simulate shear and extensional flows of a binary fluid in two and three dimensions. To this end, two classical configurations are digitally twinned, namely a parallel-band device for binary shear flow and a four-roller apparatus for binary extensional flow. The free energy lattice Boltzmann method and the test cases are implemented in the open-source parallel C++ framework OpenLB and evaluated for several non-dimensional numbers. Characteristic deformations are captured, where breakup mechanisms occur for critical capillary regimes. Though the known mass leakage for small droplet-domain ratios and large Cahn numbers is observed, suitable mesh sizes show good agreement to analytical predictions and reference results.
Citation: |
[1] | B. J. Bentley and L. G. Leal, An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows, Journal of Fluid Mechanics, 167 (1986), 241-283. doi: 10.1017/S0022112086002811. |
[2] | P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. Ⅰ. small amplitude processes in charged and neutral one-component systems, Physical Review E, 94 (1954), 511-525. doi: 10.1103/PhysRev.94.511. |
[3] | D. I. Bigio, C. R. Marks and R. V. Calabrese, Predicting drop breakup in complex flows from model flow experiments, International Polymer Processing, 13 (1998), 192-198. doi: 10.3139/217.980192. |
[4] | F. Bukreev, S. Simonis, A. Kummerländer, J. Jeßberger and M. J. Krause, Consistent lattice Boltzmann methods for the volume averaged Navier–Stokes equations, preprint, arXiv: 2208.09267, 2022. doi: 10.48550/arXiv.2208.09267. |
[5] | S. G. K. Calhoun, K. K. Brower, V. C. Suja, G. Kim, N. Wang, A. L. McCully, H. Kusumaatmaja, G. G. Fuller and P. M. Fordyce, Systematic characterization of effect of flow rates and buffer compositions on double emulsion droplet volumes and stability, Lab on a Chip, 22 (2022), 2315-2330. doi: 10.1039/D2LC00229A. |
[6] | M. E. Cates and E. Tjhung, Theories of binary fluid mixtures: From phase-separation kinetics to active emulsions, Journal of Fluid Mechanics, 836 (2018), 68 pp. doi: 10.1017/jfm.2017.832. |
[7] | D. Dapelo, S. Simonis, M. J. Krause and J. Bridgeman, Lattice-Boltzmann coupled models for advection-diffusion flow on a wide range of Péclet numbers, J. Comput. Sci., 51 (2021), 101363, 14 pp. doi: 10.1016/j.jocs.2021.101363. |
[8] | Z. Guo, C. Zheng and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, 65 (2002), 046308. doi: 10.1103/PhysRevE.65.046308. |
[9] | M. Haussmann, P. Reinshaus, S. Simonis, H. Nirschl and M. J. Krause, Fluid–structure interaction simulation of a coriolis mass flowmeter using a lattice Boltzmann method, Fluids, 6 (2021), 167. doi: 10.3390/fluids6040167. |
[10] | M. Haussmann, S. Simonis, H. Nirschl and M. J. Krause, Direct numerical simulation of decaying homogeneous isotropic turbulence – numerical experiments on stability, consistency and accuracy of distinct lattice Boltzmann methods, Internat. J. Modern Phys. C, 30 (2019), 1-29. doi: 10.1142/S0129183119500748. |
[11] | J. J. L. Higdon, The kinematics of the four-roll mill, Physics of Fluids A, 5 (1993), 274-276. doi: 10.1063/1.858782. |
[12] | V. T. Hoang and J. M. Park, A Taylor analogy model for droplet dynamics in planar extensional flow, Chemical Engineering Science, 204 (2019), 27-34. doi: 10.1016/j.ces.2019.04.015. |
[13] | A. S. Hsu and L. G. Leal, Deformation of a viscoelastic drop in planar extensional flows of a Newtonian fluid, J. Non-Newton. Fluid Mech., 160 (2009), 176-180. doi: 10.1016/j.jnnfm.2009.03.004. |
[14] | H. Huang, M. Sukop and X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application, John Wiley & Sons, 2015. doi: 10.1002/9781118971451. |
[15] | V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.-C. Desplat and P. Bladon, Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study, Journal of Fluid Mechanics, 440 (2001), 147-203. doi: 10.1017/S0022112001004682. |
[16] | J. Kim, Phase field computations for ternary fluid flows, Comput. Methods Appl. Mech. Engrg., 196 (2007), 4779-4788. doi: 10.1016/j.cma.2007.06.016. |
[17] | A. E. Komrakova, O. Shardt, D. Eskin and J. J. Derksen, Lattice Boltzmann simulations of drop deformation and breakup in shear flow, International Journal of Multiphase Flow, 59 (2014), 24-43. doi: 10.1016/j.ijmultiphaseflow.2013.10.009. |
[18] | M. J. Krause, A. Kummerländer, S. J. Avis, H. Kusumaatmaja, D. Dapelo, F. Klemens, M. Gaedtke, N. Hafen, A. Mink, R. Trunk, J. E. Marquardt, M.-L. Maier, M. Haussmann and S. Simonis, OpenLB—Open source lattice Boltzmann code, Comput. Math. Appl., 81 (2021), 258-288. doi: 10.1016/j.camwa.2020.04.033. |
[19] | M. J. Krause, S. Avis, H. Kusumaatmaja, D. Dapelo, M. Gaedtke, N. Hafen, M. Haußmann, Jonathan Jeppener-Haltenhoff, L. Kronberg, A. Kummerländer, J.E. Marquardt, T. Pertzel, S. Simonis, R. Trunk, M. Wu and A. Zarth, OpenLB Release 1.4: Open Source Lattice Boltzmann Code, Zenodo, (2020). doi: 10.5281/zenodo.4279263. |
[20] | T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E. M. Viggen, The Lattice Boltzmann Method: Principles and Practice, Springer International Publishing, 2017. doi: 10.1007/978-3-319-44649-3. |
[21] | A. Kummerländer, M. Dorn, M. Frank and M. J. Krause, Implicit propagation of directly addressed grids in lattice Boltzmann methods, Concurrency and Computation, (2021), e7509. doi: 10.1002/cpe.7509. |
[22] | H. Kusumaatmaja and J. M. Yeomans, Lattice Boltzmann simulations of wetting and drop dynamics, Simulating Complex Systems by Cellular Automata, (2010), 241-274. doi: 10.1007/978-3-642-12203-3_11. |
[23] | P. Lallemand, L.-S. Luo, M. Krafczyk and W.-A. Yong, The lattice Boltzmann method for nearly incompressible flows, J. Comput. Phys., 431 (2021), 109713, 52 pp. doi: 10.1016/j.jcp.2020.109713. |
[24] | J. Li, Y. Y. Renardy and M. Renardy, Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method, Physics of Fluids, 12 (2000), 269-282. doi: 10.1063/1.870305. |
[25] | R. Mei, L.-S. Luo, P. Lallemand and D. d'Humières, Consistent initial conditions for lattice Boltzmann simulations, Computers and Fluids, 35 (2006), 855-862. doi: 10.1016/j.compfluid.2005.08.008. |
[26] | A. Mink, K. Schediwy, C. Posten, H. Nirschl, S. Simonis and M. J. Krause, Comprehensive computational model for coupled fluid flow, mass transfer, and light supply in tubular photobioreactors equipped with glass sponges, Energies, 15 (2022). doi: 10.3390/en15207671. |
[27] | C. Semprebon, T. Krüger and H. Kusumaatmaja, Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles, Physical Review E, 93 (2016), 033305. doi: 10.1103/physreve.93.033305. |
[28] | M. Shapira and S. Haber, Low Reynolds number motion of a droplet in shear flow including wall effects, Int. J. Multiphase Flow, 16 (1990), 305-321. doi: 10.1016/0301-9322(90)90061-M. |
[29] | J. Shin, J. Yang, C. Lee and J. Kim, The Navier-Stokes-Cahn-Hilliard model with a high-order polynomial free energy, Acta Mechanica, 231 (2020), 2425-2437. doi: 10.1007/s00707-020-02666-y. |
[30] | S. Simonis, M. Frank and M. J. Krause, On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations, Philos. Trans. Roy. Soc. A, 378 (2020), 20190400, 16 pp. doi: 10.1098/rsta.2019.0400. |
[31] | S. Simonis, M. Frank and M. J. Krause, Constructing relaxation systems for lattice Boltzmann methods, Applied Mathematics Letters, 137 (2023), 108484. doi: 10.1016/j.aml.2022.108484. |
[32] | S. Simonis, M. Haussmann, L. Kronberg, W. Dörfler and M. J. Krause, Linear and brute force stability of orthogonal moment multiple-relaxation-time lattice Boltzmann methods applied to homogeneous isotropic turbulence, Philos. Trans. Roy. Soc. A, 379 (2021), 20200405, 19 pp. doi: 10.1098/rsta.2020.0405. |
[33] | S. Simonis and M. J. Krause, Forschungsnahe lehre unter Pandemiebedingungen, Mitteilungen der Deutschen Mathematiker-Vereinigung, 30 (2022), 43-45. doi: 10.1515/dmvm-2022-0015. |
[34] | S. Simonis and M. J. Krause, Limit consistency for lattice Boltzmann equations, preprint, arXiv: 2208.06867, 2022. doi: 10.48550/arXiv.2208.06867. |
[35] | S. Simonis, D. Oberle, M. Gaedtke, P. Jenny and M. J. Krause, Temporal large eddy simulation with lattice Boltzmann methods, J. Comput. Phys., 454 (2022), 110991, 19 pp. doi: 10.1016/j.jcp.2022.110991. |
[36] | M. Siodlaczek, M. Gaedtke, S. Simonis, M. Schweiker, N. Homma and M. J. Krause, Numerical evaluation of thermal comfort using a large eddy lattice Boltzmann method, Building and Environment, 192 (2021), 107618. doi: 10.1016/j.buildenv.2021.107618. |
[37] | G. Soligo, A. Roccon and A. Soldati, Deformation of clean and surfactant-laden droplets in shear flow, Meccanica, 55 (2020), 371-386. doi: 10.1007/s11012-019-00990-9. |
[38] | M. R. Swift, E. Orlandini, W. R. Osborn and J. M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Physical Review E, 54 (1996), 5041. doi: 10.1103/PhysRevE.54.5041. |
[39] | G. I. Taylor, The formation of emulsions in definable fields of flow, Proc. R. Soc. Lond. A, 146 (1934), 501-523. doi: 10.1098/rspa.1934.0169. |
[40] | D. C. Tretheway and L. G. Leal, Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid, J. Non-Newton. Fluid Mech., 99 (2001), 81-108. doi: 10.1016/S0377-0257(01)00123-9. |
[41] | N. Wang, C. Semprebon, H. Liu, C. Zhang and H. Kusumaatmaja, Modelling double emulsion formation in planar flow-focusing microchannels, Journal of Fluid Mechanics, 895 (2020), 36 pp. doi: 10.1017/jfm.2020.299. |
[42] | P. Yue, C. Zhou and J. J. Feng, Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223 (2007), 1-9. doi: 10.1016/j.jcp.2006.11.020. |
[43] | X. Zhao, Drop breakup in dilute Newtonian emulsions in simple shear flow: New drop breakup mechanisms, Journal of Rheology, 51 (2007), 367-392. doi: 10.1122/1.2714641. |
[44] | L. Zheng, T. Lee, Z. Guo and D. Rumschitzki, Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases, Physical Review E, 89 (2014), 033302. doi: 10.1103/PhysRevE.89.033302. |
Discrete velocity sets
Geometric setup of numerical test cases for binary flow in two dimensions. Scales differ for the purpose of representation
Deformation and inclination of a droplet in binary shear flow simulated with FRE LBM for varying capillary numbers
Droplet breakup in 2D binary shear flow at
Droplet breakup in 3D binary shear flow at normalized time steps for
Deformation of a droplet in binary extensional flow simulated with FRE LBM for varying capillary numbers
Droplet breakup in 2D binary extensional flow at normalized time steps for
Static droplet test case in 2D computed with FRE LBM. The order parameter