\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New semigroups from old: An approach to Feller boundary conditions

Dedicated to J.A. Goldstein, a prolific mathematician and a kind friend

Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • Stochastic techniques allow constructing new random processes from old. For example, given an unrestricted Brownian motion one can construct reflecting, elastic, killed, and stopped Brownian motions. On the other hand, from the functional-analytic point of view, the semigroups that describe these new processes seem to need to be obtained independently, using the Hille–Yosida theorem. The aim of this article is to show that this is not necessary; all these semigroups are hidden in the unrestricted Brownian motion semigroup as its subspace semigroups. In other words, in the semigroup theory, subspace semigroups play the role of a number of advanced techniques of stochastic analysis.

    To exemplify this, we exhibit a number of invariant subspaces for the unrestricted Brownian motion semigroup, construct the corresponding semigroups and show how they are related to the semigroups describing Brownian motions on the half-line with various types of boundary behavior at $ x = 0 $, including the Brownian motions named above. This analysis is then applied to explaining the nature of transmission conditions used in modeling semi-permeable and permeable membranes.

    Mathematics Subject Classification: Primary: 35B06, 47D07, 47D09, 60J35, 60J65; Secondary: 60J55, 60J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Free basic types of behavior of BM at the boundary — (B) reflection, (C) killing (with removing), and (D) stopping

    Figure 2.  Three extreme cases of boundary conditions

    Figure 3.  Elementary exit BM (on the left) versus elastic BM (on the right) — both are undefined after a sufficiently long time is spent at the boundary

    Figure 4.  A new construction of reflecting Brownian motion starting at $ 0 $: the original path of an unrestricted Brownian (A), its maximum (B), and the difference between the two (C)

    Figure 5.  Skew BM is constructed from reflecting BM as follows: each excursion from zero to $ (0, \infty) $ is with probability $ 1- \alpha $ reflected to $ (-\infty, 0) $. In the particular path depicted above, it is the sixth, the eighth, the tenth and the twelfth excursions that are reflected, the remaining ones are left intact

  • [1] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2001. doi: 10.1007/978-3-0348-5075-9.
    [2] R. F. BassStochastic Processes, vol. 33 of Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge, 2011.  doi: 10.1017/CBO9780511997044.
    [3] A. BobrowskiFunctional Analysis for Probability and Stochastic Processes, An Introduction, Cambridge University Press, Cambridge, 2005.  doi: 10.1017/CBO9780511614583.
    [4] A. Bobrowski, Generation of cosine families via Lord Kelvin's method of images, J. Evol. Equ., 10 (2010), 663-675.  doi: 10.1007/s00028-010-0065-z.
    [5] A. Bobrowski, Families of operators describing diffusion through permeable membranes, in Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Arendt, W., Chill, R., Tomilov, Y., eds., vol. 250 of Operator Theory, Advances and Applications, Birkhäuser, 2015, 87-105. doi: 10.1007/978-3-319-18494-4_6.
    [6] A. BobrowskiConvergence of One-Parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, vol. 30 of New Mathematical Monographs, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316480663.
    [7] A. BobrowskiGenerators of Markov Chains. From a Walk in the Interior to a Dance on the Boundary, Cambridge University Press, Cambridge, 2021.  doi: 10.1017/9781108863070.
    [8] A. Bobrowski, Concatenation of dishonest Feller processes, exit laws, and limit theorems on graphs, To appear in SIAM J. of Math. Analysis, see also arXiv, 2022. arXiv: 2204.09354.
    [9] A. Bobrowski and T. Komorowski, Diffusion approximation for a simple kinetic model with asymmetric interface., J. Evol. Equ. 22, 42 (2022). doi: 10.1007/s00028-022-00801-x.
    [10] A. Bobrowski and K. Morawska, From a PDE model to an ODE model of dynamics of synaptic depression, Discr. Cont. Dyn. Syst. B, 17 (2012), 2313-2327.  doi: 10.3934/dcdsb.2012.17.2313.
    [11] A. Bobrowski and E. Ratajczyk, On pairs of complementary transmission conditions and on approximation of skew Brownian motion by snapping-out Brownian motions, arXiv: 2303.10041 [math.PR], 1-34.
    [12] A. Bobrowski and E. Ratajczyk, Pairs of complementary transmission conditions for Brownian motion, To appear in Mathematische Annalen.
    [13] R. Chill, V. Keyantuo and M. Warma, Generation of cosine families on $L^p(0, 1)$ by elliptic operators with Robin boundary conditions, in Functional Analysis and Evolution Equations. The Günter Lumer Volume, Birkhäuser, Basel, 2007,113-130, Amann, H. et al. (Eds.). doi: 10.1007/978-3-7643-7794-6_7.
    [14] K. L. Chung, Lectures from Markov Processes to Brownian Motion, vol. 249 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], Springer-Verlag, New York-Berlin, 1982.
    [15] K. L. Chung and J. B. Walsh, Markov Processes, Brownian Motion, and Time Symmetry, vol. 249 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Second edition edition, Springer, New York, 2005. doi: 10.1007/0-387-28696-9.
    [16] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986. doi: 10.1002/9780470316658.
    [17] W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. Math., 55 (1952), 468-519.  doi: 10.2307/1969644.
    [18] W. Feller, Generalized second order differential operators and their lateral conditions, Illinois J. Math., 1 (1957), 459-504. http://projecteuclid.org/euclid.ijm/1255380673.
    [19] W. Feller, An Introduction to Probability Theory and its Applications, vol. 2, Wiley, New York, 1966, Second edition, 1971.
    [20] K. Itô and H. P. McKean, Jr., Brownian motions on a half line, Illinois J. Math., 7 (1963), 181-231. http://projecteuclid.org/euclid.ijm/1255644633.
    [21] K. Itô and H. P. McKean, Jr., Diffusion Processes and their Sample Paths, Springer, Berlin, 1996, Repr. of the 1974 ed.
    [22] O. Kallenberg, Foundations of Modern Probability, 2nd edition, Springer, 2002. doi: 10.1007/978-1-4757-4015-8.
    [23] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer, New York, 1991. doi: 10.1007/978-1-4612-0949-2.
    [24] A. Lejay, On the constructions of the skew Brownian motion, Probab. Surv., 3 (2006), 413-466.  doi: 10.1214/154957807000000013.
    [25] A. Lejay, The snapping out Brownian motion, Ann. Appl. Probab., 26 (2016), 1727-1742.  doi: 10.1214/15-AAP1131.
    [26] P. Lévy, Processus Stochastiques et Mouvement Brownien. Suivi d'une Note de M. Loève, Gauthier-Villars, Paris, 1948.
    [27] T. M. Liggett, Continuous Time Markov Processes. An Introduction, Amer. Math. Soc., 2010. doi: 10.1090/gsm/113.
    [28] P. Mandl, Analytical Treatment of One-Dimensional Markov Processes, Springer, 1968.
    [29] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 1999, Third edition. doi: 10.1007/978-3-662-06400-9.
    [30] L. C. G. Rogers, Itô excursion theory via resolvents, Z. Wahrsch. Verw. Gebiete, 63 (1983), 237-255.  doi: 10.1007/BF00538964.
    [31] J. B. Walsh, A diffusion with a discontinuous local time, in Temps Locaus, Astérisque, Sociéte Mathématique de France, Astérisque, Sociéte Mathématique de France, 1978, 37-45.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(2107) PDF downloads(590) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return