We consider a nonhomogeneous first-order evolution equation governed by a maximal monotone operator $ A $ in a Hilbert space in the presence of a Tikhonov regularization term. We study the existence and strong convergence of weak solutions to such systems. With boundedness conditions on the central path or on the solution trajectory, without assuming the zero set of $ A $ to be nonempty and with suitable assumptions on the Tikhonov regularization coefficient, we prove that the weak solutions to the system converge strongly to the element of least norm in the zero set of $ A $. As a consequence, we provide sufficient conditions where the boundedness of the weak solutions to the nonhomogeneous Tikhonov system is equivalent to the zero set of $ A $ to be nonempty. Our work is motivated by [4,17,22] and extends some results by those authors.
Citation: |
[1] |
H. Attouch, A. Cabot, Z. Chbani and H. Riahi, Inertial forward-backward algorithms with perturbations: application to Tikhonov regularization, J. Opt. Theory Appl., 179 (2018), 1-36.
doi: 10.1007/s10957-018-1369-3.![]() ![]() ![]() |
[2] |
H. Attouch, A. Cabot and M. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.
doi: 10.1090/tran/6965.![]() ![]() ![]() |
[3] |
H. Attouch, Z. Chbani and H. Riahi, Combining fast inertial dynamics for convex optimization with Tikhonov regularization, J. Math. Anal. Appl., 457 (2018), 1065-1094.
doi: 10.1016/j.jmaa.2016.12.017.![]() ![]() ![]() |
[4] |
H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations, 128 (1996), 519-540.
doi: 10.1006/jdeq.1996.0104.![]() ![]() ![]() |
[5] |
H. Attouch and M.-O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria, J. Differential Equations, 179 (2002), 278-310.
doi: 10.1006/jdeq.2001.4034.![]() ![]() ![]() |
[6] |
J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris, 280 (1975), 1511-1514.
![]() ![]() |
[7] |
J.-B. Baillon, Un exemple concernant le comportement asymptotique de la solution du problème $ du/dt + \partial\varphi(u)\ni0$, J. Funct. Anal., 28 (1978), 369-376.
doi: 10.1016/0022-1236(78)90093-9.![]() ![]() ![]() |
[8] |
J. B. Baillon and H. Brézis, Une remarque sur le comportement asymptotique des semi-groupes non linéaires, Houston J. Math., 2 (1976), 5-7.
![]() ![]() |
[9] |
A. Balhag, Z. Chbani and H. Riahi, Existence and continuous-discrete asymptotic behaviour for Tikhonov-like dynamical equilibrium systems, Evol. Equ. Control Theory., 7 (2018), 373-401.
doi: 10.3934/eect.2018019.![]() ![]() ![]() |
[10] |
H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edition, Springer, New York, 2017.
doi: 10.1007/978-3-319-48311-5.![]() ![]() ![]() |
[11] |
R. I. Boţ, E. R. Csetnek and D. Meier, Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces, Optim. Methods Softw., 34 (2019), 489-514.
doi: 10.1080/10556788.2018.1457151.![]() ![]() ![]() |
[12] |
R. I. Boţ, S. M. Grad, D. Meier and M. Staudigl, Inducing strong convergence of trajectories in dynamical systems associated to monotone inclusions with composite structure, Adv. Nonlinear Anal., 10 (2021), 450-476.
doi: 10.1515/anona-2020-0143.![]() ![]() ![]() |
[13] |
H. Brézis, Opérateurs Maximaux Monotones, North-Holland, Mathematics Studies 5, 1973.
![]() |
[14] |
F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math. part 2, Amer. Math. Sot. Providence, RI., 18 (1976), 1-308.
![]() ![]() |
[15] |
R. E. Bruck, A strongly convergent iterative solution of $0 \in U(x) $ for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., 48 (1974), 114-126.
doi: 10.1016/0022-247X(74)90219-4.![]() ![]() ![]() |
[16] |
R. E. Bruck, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal., 18 (1975), 15-26.
doi: 10.1016/0022-1236(75)90027-0.![]() ![]() ![]() |
[17] |
R. Cominetti, J. Peypouquet and S. Sorin, Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization, J. Differential Equations, 245 (2008), 3753-3763.
doi: 10.1016/j.jde.2008.08.007.![]() ![]() ![]() |
[18] |
M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), 57-94.
doi: 10.1007/BF02761448.![]() ![]() ![]() |
[19] |
B. Dinis and P. Pinto, On the convergence of algorithms with Tikhonov regularization terms, Optim. Lett., 15 (2021), 1263-1276.
doi: 10.1007/s11590-020-01635-7.![]() ![]() ![]() |
[20] |
B. Djafari Rouhani, Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 151 (1990), 226-235.
doi: 10.1016/0022-247X(90)90253-C.![]() ![]() ![]() |
[21] |
B. Djafari Rouhani, Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 147 (1990), 465-476.
doi: 10.1016/0022-247X(90)90361-I.![]() ![]() ![]() |
[22] |
M. M. Israel Jr. and S. Reich, Asymptotic behavior of solutions of a nonlinear evolution equation, J. Math. Anal. Appl., 83 (1981), 43-53.
doi: 10.1016/0022-247X(81)90245-6.![]() ![]() ![]() |
[23] |
N. Lehdili and A. Moudafi, Combining the proximal algorithm and Tikhonov regularization, Optimization, 37 (1996), 239-252.
doi: 10.1080/02331939608844217.![]() ![]() ![]() |
[24] |
S. Reich, Nonlinear evolution equations and nonlinear ergodic theorems, Nonlinear Anal., 1 (1976), 319-330.
doi: 10.1016/S0362-546X(97)90001-8.![]() ![]() ![]() |
[25] |
S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 15 (1980), 287-292.
doi: 10.1016/0022-247X(80)90323-6.![]() ![]() ![]() |
[26] |
A. N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Doklady Akademii Nauk SSSR, 151 (1963), 501-504, (translated in Soviet Mathematics, 4 (1963), 1035-1038.)
![]() |
[27] |
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems, Winston, New York, 1977.
![]() ![]() |