The purpose of this paper is to study the eigenvalues $ \{\lambda_{\mu,i} \}_i $ for the Dirichlet Hardy-Leray operator, i.e.
$ -\Delta u+\mu|x|^{-2}u = \lambda u\ \ {\rm in}\ \, \Omega,\quad\quad u = 0\ \ {\rm on}\ \ \partial\Omega, $
where $ -\Delta +\frac{\mu}{|x|^2} $ is the Hardy-Leray operator with $ \mu\geq -\frac{(N-2)^2}{4} $ and $ \Omega $ is a smooth bounded domain with $ 0\in\Omega $. We provide lower bounds of $ \{\lambda_{\mu,i} \}_i $, as well as the Li-Yau's one when $ \mu>-\frac{(N-2)^2}{4} $ and Karachalios's bounds for $ \mu\in [-\frac{(N-2)^2}{4},0) $. Secondly, we obtain Cheng-Yang's type upper bounds for $ \lambda_{\mu,k} $. Additionally, we get the Weyl's limit of eigenvalues which is independent of the potential's parameter $ \mu $. This interesting phenomenon indicates that the inverse-square potential does not play an essential role for the asymptotic behavior of the spectrum of the problem under study.
Citation: |
[1] | M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in Spectral Theory and Geometry (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., 273, pp. 95-139. Cambridge Univ. Press, Cambridge, 1999. doi: 10.1017/CBO9780511566165.007. |
[2] | H. Berestycki and M. J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Diff. Eq., 134 (1997), 1-25. doi: 10.1006/jdeq.1996.3165. |
[3] | F. A. Berezin, Convex functions of operators, Mat. Sb, (N.S), 88 (1072), 268-276. |
[4] | M. S. Birman and M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Leningrad. Univ., Leningrad, 1980 (Russian); English transl.: Math. and its Applic. Soviet Series, 5. Kluwer, Dordrecht, 1987. |
[5] | H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa Cl. Sci., 25 (1997), 217-237. |
[6] | H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic equations, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469. |
[7] | D. Bucur and A. Henrot, Maximization of the second non-trivial Neumann eigenvalue, Acta Math., 222 (2019), 337-361. doi: 10.4310/ACTA.2019.v222.n2.a2. |
[8] | C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741-3782. doi: 10.1016/j.jfa.2012.09.006. |
[9] | J. Chabrowski, The Hardy potential and eigenvalue problems, Opuscula Mathematica, 31 (2011), 173-194. doi: 10.1142/S0219199710004044. |
[10] | H. Chen, S. Alhomedan, H. Hajaiej and P. Markowich, Fundamental solutions for Schrödinger operators with general inverse square potentials, Appl. Anal., 97 (2018), 787-810. doi: 10.1080/00036811.2017.1286648. |
[11] | H. Chen and P. Luo, Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators, Calc. Var. PDEs., 54 (2015), 2831-2852. doi: 10.1007/s00526-015-0885-3. |
[12] | H. Chen, A. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the Hardy- Leray potentials, J. Anal. Math., 144 (2021), 305-334. doi: 10.1007/s11854-021-0182-3. |
[13] | H. Chen and L. Véron, Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data, Mathematics in Engineering, 1 (2019), 391-418. doi: 10.3934/mine.2019.3.391. |
[14] | H. Chen and L. Véron, Semilinear elliptic equations with Leray-Hardy potential singular on the boundary and measure data, J. Diff. Eq., 269 (2020), 2091-2131. doi: 10.1016/j.jde.2020.01.029. |
[15] | H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. PDEs., 56 (2017), Paper No. 131, 12 pp. doi: 10.1007/s00526-017-1220-y. |
[16] | Q.-M. Cheng and H. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175. doi: 10.1007/s00208-006-0030-x. |
[17] | Q.-M. Cheng and H. Yang, Inequalities for eigenvalues of a clamped plate problem, Trans. Am. Math. Soc., 358 (2006), 2625-2635. doi: 10.1090/S0002-9947-05-04023-7. |
[18] | Q.-M. Cheng and H. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175. doi: 10.1007/s00208-006-0030-x. |
[19] | Q.-M. Cheng and G. Wei, A lower bound for eigenvalues of a clamped plate problem, Calc.Var and PDEs., 42 (2011), 579-590. doi: 10.1007/s00526-011-0399-6. |
[20] | J. Dávila and L. Dupaigne, Hardy type inequalities, J. Eur. Math. Soc., 6 (2004), 335-365. |
[21] | B. Devyver, A spectral result for Hardy inequalities, J. Math. Pures Appl., 102 (2014), 813-853. doi: 10.1016/j.matpur.2014.02.007. |
[22] | T. Ekholm and R. L. Frank, On Lieb-Thirring inequalities for Schrödinger operators with virtual level, Comm. Math. Phys., 264 (2006), 725-740. doi: 10.1007/s00220-006-1521-z. |
[23] | G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmgige den leifsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss., (1923), 169-172. |
[24] | S. Filippas, L. Moschini and A. Tertikas, Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains, Comm. Math. Phys., 273 (2007), 237-281. doi: 10.1007/s00220-007-0253-z. |
[25] | S. Fillippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233. doi: 10.1006/jfan.2001.3900. |
[26] | R. L. Frank, A simple proof of Hardy-Lieb-Thirring inequalities, Comm. Math. Phys., 290 (2009), 789-800. doi: 10.1007/s00220-009-0759-7. |
[27] | R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-LiebThirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950. doi: 10.1090/S0894-0347-07-00582-6. |
[28] | J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476. doi: 10.1006/jdeq.1997.3375. |
[29] | I. M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk, 14 (1959), 87-158. |
[30] | A. Henrot and O. Edouard, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions, Arch. Ration. Mech. Anal., 169 (2003), 73-87. doi: 10.1007/s00205-003-0259-4. |
[31] | N. I. Karachalios, Weyl's type estimates on the eigenvalues of critical Schrödinger operators, Lett. Math. Phys., 83 (2008), 189-199. doi: 10.1007/s11005-007-0218-3. |
[32] | E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 94 (1925), 97-100. doi: 10.1007/BF01208645. |
[33] | P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal., 126 (1994), 217-227. doi: 10.1006/jfan.1994.1146. |
[34] | J. M. Lévy-Leblond, Electron capture by polar molecules, Phys. Rev., 153 (1967), 1-4. |
[35] | A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal., 151 (1997), 531-545. doi: 10.1006/jfan.1997.3155. |
[36] | P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318. |
[37] | E. H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math., 36 (1980), 241-252. |
[38] | A. D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Am. Math. Soc., 131 (2003), 631-636. doi: 10.1090/S0002-9939-02-06834-X. |
[39] | D. C. Mitrinović, J. E. Pecaric and A. M. Fink, Bessel's Inequality, In: Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol 61, Springer, 1993. doi: 10.1007/978-94-017-1043-5. |
[40] | L. Moschini and A. Tesei, Parabolic Harnack inequality for the heat equation with inverse-square potential, Forum Math., 19 (2007), 407-427. doi: 10.1515/FORUM.2007.017. |
[41] | G. Pólya, On the Eigenvalues of Vibrating Membranes (In Memoriam Hermann Weyl), Proc. Lond. Math. Soc., 11 (1961), 419-433. doi: 10.1112/plms/s3-11.1.419. |
[42] | B. Simon, Functional Integration and Quantum Physics, Academic Press, New York, 1979. |
[43] | J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with and inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: 10.1006/jfan.1999.3556. |
[44] | H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479. doi: 10.1007/BF01456804. |
[45] | N. B. Zographopoulos, Weyl's type estimates on the eigenvalues of critical Schrödinger operators using improved Hardy-Sobolev inequalities, J. Phys. A: Math. Theor., 42 (2009), 465204, 8 pp. doi: 10.1088/1751-8113/42/46/465204. |