\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bounds of Dirichlet eigenvalues for Hardy-Leray operator

  • *Corresponding author: Feng Zhou

    *Corresponding author: Feng Zhou

Dedicated to the 60th birthday of Professor Yihong Du

This work is is supported by NNSF of China, No: 12071189 and 11431005, by the Jiangxi Provincial Natural Science Foundation, No: 20212ACB211005, by Science and Technology Commission of Shanghai Municipality (STCSM), No: 18dz2271000

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The purpose of this paper is to study the eigenvalues $ \{\lambda_{\mu,i} \}_i $ for the Dirichlet Hardy-Leray operator, i.e.

    $ -\Delta u+\mu|x|^{-2}u = \lambda u\ \ {\rm in}\ \, \Omega,\quad\quad u = 0\ \ {\rm on}\ \ \partial\Omega, $

    where $ -\Delta +\frac{\mu}{|x|^2} $ is the Hardy-Leray operator with $ \mu\geq -\frac{(N-2)^2}{4} $ and $ \Omega $ is a smooth bounded domain with $ 0\in\Omega $. We provide lower bounds of $ \{\lambda_{\mu,i} \}_i $, as well as the Li-Yau's one when $ \mu>-\frac{(N-2)^2}{4} $ and Karachalios's bounds for $ \mu\in [-\frac{(N-2)^2}{4},0) $. Secondly, we obtain Cheng-Yang's type upper bounds for $ \lambda_{\mu,k} $. Additionally, we get the Weyl's limit of eigenvalues which is independent of the potential's parameter $ \mu $. This interesting phenomenon indicates that the inverse-square potential does not play an essential role for the asymptotic behavior of the spectrum of the problem under study.

    Mathematics Subject Classification: Primary: 35P15; Secondary: 35J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in Spectral Theory and Geometry (Edinburgh, 1998), London Math. Soc. Lecture Note Ser., 273, pp. 95-139. Cambridge Univ. Press, Cambridge, 1999. doi: 10.1017/CBO9780511566165.007.
    [2] H. Berestycki and M. J. Esteban, Existence and bifurcation of solutions for an elliptic degenerate problem, J. Diff. Eq., 134 (1997), 1-25.  doi: 10.1006/jdeq.1996.3165.
    [3] F. A. Berezin, Convex functions of operators, Mat. Sb, (N.S), 88 (1072), 268-276. 
    [4] M. S. Birman and M. Z. Solomjak, Spectral theory of self-adjoint operators in Hilbert space, Leningrad. Univ., Leningrad, 1980 (Russian); English transl.: Math. and its Applic. Soviet Series, 5. Kluwer, Dordrecht, 1987.
    [5] H. Brezis and M. Marcus, Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa Cl. Sci., 25 (1997), 217-237. 
    [6] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic equations, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469. 
    [7] D. Bucur and A. Henrot, Maximization of the second non-trivial Neumann eigenvalue, Acta Math., 222 (2019), 337-361.  doi: 10.4310/ACTA.2019.v222.n2.a2.
    [8] C. Cazacu, Schrödinger operators with boundary singularities: Hardy inequality, Pohozaev identity and controllability results, J. Funct. Anal., 263 (2012), 3741-3782.  doi: 10.1016/j.jfa.2012.09.006.
    [9] J. Chabrowski, The Hardy potential and eigenvalue problems, Opuscula Mathematica, 31 (2011), 173-194.  doi: 10.1142/S0219199710004044.
    [10] H. ChenS. AlhomedanH. Hajaiej and P. Markowich, Fundamental solutions for Schrödinger operators with general inverse square potentials, Appl. Anal., 97 (2018), 787-810.  doi: 10.1080/00036811.2017.1286648.
    [11] H. Chen and P. Luo, Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators, Calc. Var. PDEs., 54 (2015), 2831-2852.  doi: 10.1007/s00526-015-0885-3.
    [12] H. ChenA. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the Hardy- Leray potentials, J. Anal. Math., 144 (2021), 305-334.  doi: 10.1007/s11854-021-0182-3.
    [13] H. Chen and L. Véron, Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data, Mathematics in Engineering, 1 (2019), 391-418.  doi: 10.3934/mine.2019.3.391.
    [14] H. Chen and L. Véron, Semilinear elliptic equations with Leray-Hardy potential singular on the boundary and measure data, J. Diff. Eq., 269 (2020), 2091-2131.  doi: 10.1016/j.jde.2020.01.029.
    [15] H. Chen and A. Zeng, Universal inequality and upper bounds of eigenvalues for non-integer poly-Laplacian on a bounded domain, Calc. Var. PDEs., 56 (2017), Paper No. 131, 12 pp. doi: 10.1007/s00526-017-1220-y.
    [16] Q.-M. Cheng and H. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.  doi: 10.1007/s00208-006-0030-x.
    [17] Q.-M. Cheng and H. Yang, Inequalities for eigenvalues of a clamped plate problem, Trans. Am. Math. Soc., 358 (2006), 2625-2635.  doi: 10.1090/S0002-9947-05-04023-7.
    [18] Q.-M. Cheng and H. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175.  doi: 10.1007/s00208-006-0030-x.
    [19] Q.-M. Cheng and G. Wei, A lower bound for eigenvalues of a clamped plate problem, Calc.Var and PDEs., 42 (2011), 579-590.  doi: 10.1007/s00526-011-0399-6.
    [20] J. Dávila and L. Dupaigne, Hardy type inequalities, J. Eur. Math. Soc., 6 (2004), 335-365. 
    [21] B. Devyver, A spectral result for Hardy inequalities, J. Math. Pures Appl., 102 (2014), 813-853.  doi: 10.1016/j.matpur.2014.02.007.
    [22] T. Ekholm and R. L. Frank, On Lieb-Thirring inequalities for Schrödinger operators with virtual level, Comm. Math. Phys., 264 (2006), 725-740.  doi: 10.1007/s00220-006-1521-z.
    [23] G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmgige den leifsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss., (1923), 169-172.
    [24] S. FilippasL. Moschini and A. Tertikas, Sharp two-sided heat kernel estimates for critical Schrödinger operators on bounded domains, Comm. Math. Phys., 273 (2007), 237-281.  doi: 10.1007/s00220-007-0253-z.
    [25] S. Fillippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233.  doi: 10.1006/jfan.2001.3900.
    [26] R. L. Frank, A simple proof of Hardy-Lieb-Thirring inequalities, Comm. Math. Phys., 290 (2009), 789-800.  doi: 10.1007/s00220-009-0759-7.
    [27] R. L. FrankE. H. Lieb and R. Seiringer, Hardy-LiebThirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.  doi: 10.1090/S0894-0347-07-00582-6.
    [28] J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476.  doi: 10.1006/jdeq.1997.3375.
    [29] I. M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk, 14 (1959), 87-158. 
    [30] A. Henrot and O. Edouard, Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions, Arch. Ration. Mech. Anal., 169 (2003), 73-87.  doi: 10.1007/s00205-003-0259-4.
    [31] N. I. Karachalios, Weyl's type estimates on the eigenvalues of critical Schrödinger operators, Lett. Math. Phys., 83 (2008), 189-199.  doi: 10.1007/s11005-007-0218-3.
    [32] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 94 (1925), 97-100.  doi: 10.1007/BF01208645.
    [33] P. Kröger, Estimates for sums of eigenvalues of the Laplacian, J. Funct. Anal., 126 (1994), 217-227.  doi: 10.1006/jfan.1994.1146.
    [34] J. M. Lévy-Leblond, Electron capture by polar molecules, Phys. Rev., 153 (1967), 1-4. 
    [35] A. Laptev, Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces, J. Funct. Anal., 151 (1997), 531-545.  doi: 10.1006/jfan.1997.3155.
    [36] P. Li and S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys., 88 (1983), 309-318. 
    [37] E. H. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, Proc. Sym. Pure Math., 36 (1980), 241-252. 
    [38] A. D. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Am. Math. Soc., 131 (2003), 631-636.  doi: 10.1090/S0002-9939-02-06834-X.
    [39] D. C. Mitrinović, J. E. Pecaric and A. M. Fink, Bessel's Inequality, In: Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series), vol 61, Springer, 1993. doi: 10.1007/978-94-017-1043-5.
    [40] L. Moschini and A. Tesei, Parabolic Harnack inequality for the heat equation with inverse-square potential, Forum Math., 19 (2007), 407-427.  doi: 10.1515/FORUM.2007.017.
    [41] G. Pólya, On the Eigenvalues of Vibrating Membranes (In Memoriam Hermann Weyl), Proc. Lond. Math. Soc., 11 (1961), 419-433.  doi: 10.1112/plms/s3-11.1.419.
    [42] B. SimonFunctional Integration and Quantum Physics, Academic Press, New York, 1979. 
    [43] J. L. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behavior of the heat equation with and inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.  doi: 10.1006/jfan.1999.3556.
    [44] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.  doi: 10.1007/BF01456804.
    [45] N. B. Zographopoulos, Weyl's type estimates on the eigenvalues of critical Schrödinger operators using improved Hardy-Sobolev inequalities, J. Phys. A: Math. Theor., 42 (2009), 465204, 8 pp. doi: 10.1088/1751-8113/42/46/465204.
  • 加载中
SHARE

Article Metrics

HTML views(2130) PDF downloads(400) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return