In this manuscript, existence of strong solutions to the Cauchy problem for a doubly-nonlinear parabolic equation posed in $ \mathbb{R}^d $ is proved based on Colli's result [16], which extends the celebrated Colli-Visintin theory to Banach space settings, as well as the localized Minty's trick, which can also cover a wide class of PDEs in unbounded domains and enable us to overcome difficulties in identification of weak limits arising from the lack of compact embeddings due to the unboundedness of domains.
Citation: |
[1] |
G. Akagi, On some doubly nonlinear parabolic equations, Current Advances in Nonlinear Analysis and Related Topics, GAKUTO International Series, Mathematical Sciences and Applications, Gakko-Tosho, 32 (2010), 239-254.
![]() ![]() |
[2] |
G. Akagi, Doubly nonlinear evolution equations with non-monotone perturbations in reflexive Banach spaces, J. Evol. Eq., 11 (2011), 1-41.
doi: 10.1007/s00028-010-0079-6.![]() ![]() ![]() |
[3] |
G. Akagi, Global attractors for doubly nonlinear evolution equations with non-monotone perturbations, J. Diff. Eq., 250 (2011), 1850-1875.
doi: 10.1016/j.jde.2010.10.019.![]() ![]() ![]() |
[4] |
G. Akagi, K. Ishige and R. Sato, General framework to construct local-energy solutions of nonlinear diffusion equations for growing initial data, J. Funct. Anal., 284 (2023), 109891, 86 pp.
doi: 10.1016/j.jfa.2023.109891.![]() ![]() ![]() |
[5] |
G. Akagi and M. Ôtani, Time-dependent constraint problems arising from macroscopic critical-state models for type-Ⅱ superconductivity and their approximations, Adv. Math. Sci. Appl., 14 (2004), 683-712.
![]() ![]() |
[6] |
G. Akagi and G. Schimperna, Subdifferential calculus and doubly nonlinear evolution equations in $L^p$-spaces with variable exponents, J. Funct. Anal., 267 (2014), 173-213.
doi: 10.1016/j.jfa.2014.04.015.![]() ![]() ![]() |
[7] |
G. Akagi and G. Schimperna, On a class of doubly nonlinear evolution equations in Musielak-Orlicz spaces, arXiv: 2305.08425.
![]() |
[8] |
G. Akagi and U. Stefanelli, Weighted energy-dissipation functionals for doubly nonlinear evolution, J. Funct. Anal., 260 (2011), 2541-2578.
doi: 10.1016/j.jfa.2010.12.027.![]() ![]() ![]() |
[9] |
G. Akagi and U. Stefanelli, Periodic solutions for doubly nonlinear evolution equations, J. Diff. Eq., 251 (2011), 1790-1812.
doi: 10.1016/j.jde.2011.04.014.![]() ![]() ![]() |
[10] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
![]() ![]() |
[11] |
T. Arai, On the existence of the solution for $\partial \phi(u'(t)) + \partial \psi(u(t)) \ni f(t)$, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 26 (1979), 75-96.
![]() ![]() |
[12] |
V. Barbu, Existence theorems for a class of two point boundary problems, J. Diff. Eq., 17 (1975), 236-257.
doi: 10.1016/0022-0396(75)90043-1.![]() ![]() ![]() |
[13] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces, Editura Academiei Republicii Socialiste România, BucharestNoordhoff International Publishing, Leiden, 1976.
![]() ![]() |
[14] |
H. Brézis, Opérateurs Maximaux Monotones et Sémi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Math. Studies, vol. 5, North-Holland, Amsterdam, 1973.
![]() ![]() |
[15] |
H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure. Appl. Math., 23 (1970), 123-144.
doi: 10.1002/cpa.3160230107.![]() ![]() ![]() |
[16] |
P. Colli, On some doubly nonlinear evolution equations in Banach spaces, Japan J. Indust. Appl. Math., 9 (1992), 181-203.
doi: 10.1007/BF03167565.![]() ![]() ![]() |
[17] |
P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Partial Differential Equations, 15 (1990), 737-756.
doi: 10.1080/03605309908820706.![]() ![]() ![]() |
[18] |
R. Hynd and E. Lindgren, A doubly nonlinear evolution for the optimal Poincaré inequality, Calc. Var. Partial Differential Equations, 55 (2016), Art. 100, 22 pp.
doi: 10.1007/s00526-016-1026-3.![]() ![]() ![]() |
[19] |
R. Hynd and E. Lindgren, Lipschitz regularity for a homogeneous doubly nonlinear PDE, SIAM J. Math. Anal., 51 (2019), 3606-3624.
doi: 10.1137/19M1246201.![]() ![]() ![]() |
[20] |
N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304-331.
doi: 10.1007/BF02761596.![]() ![]() ![]() |
[21] |
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I., Die Grundlehren der mathematischen Wissenschaften, 181. Springer-Verlag, New York–Heidelberg, 1972.
![]() ![]() |
[22] |
A. Mielke and F. Theil, On rate-independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7.![]() ![]() ![]() |
[23] |
A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations, Calc. Var. Partial Differential Equations, 46 (2013), 253-310.
doi: 10.1007/s00526-011-0482-z.![]() ![]() ![]() |
[24] |
T. Roubíček, Nonlinear Partial Differential Equations with Applications, International Series of Numerical Mathematics, 153. Birkhäuser Verlag, Basel, 2005.
![]() ![]() |
[25] |
G. Schimperna, A. Segatti and U. Stefanelli, Well-posedness and long-time behavior for a class of doubly nonlinear equations, Discrete Contin. Dyn. Syst., 18 (2007), 15-38.
doi: 10.3934/dcds.2007.18.15.![]() ![]() ![]() |
[26] |
A. Segatti, Global attractor for a class of doubly nonlinear abstract evolution equations, Discrete Contin. Dyn. Syst., 14 (2006), 801-820.
doi: 10.3934/dcds.2006.14.801.![]() ![]() ![]() |
[27] |
T. Senba, On some nonlinear evolution equation, Funkcial Ekvac., 29 (1986), 243-257.
![]() ![]() |
[28] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[29] |
U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control Optim., 47 (2008), 1615-1642.
doi: 10.1137/070684574.![]() ![]() ![]() |
[30] |
J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007.
![]() ![]() |
[31] |
A. Visintin, Models of Phase Transitions, Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4078-5.![]() ![]() ![]() |