\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Degenerate diffusion with Preisach hysteresis

  • *Corresponding author: Pavel Krejčí

    *Corresponding author: Pavel Krejčí

The first author is supported by the Austrian Science Fund (FWF) grants V662, Y1292, and F65, and by the OeAD WTZ grants CZ02/2022 and CZ09/2023; the second author is supported by the GAČR Grant No. 20-14736S, and by the European Regional Development Fund Project No. CZ.02.1.01/0.0/0.0/16_019/0000778

Abstract / Introduction Full Text(HTML) Figure(3) Related Papers Cited by
  • Fluid diffusion in unsaturated porous media manifests strong hysteresis effects due to surface tension on the liquid-gas interface. We describe hysteresis in the pressure-saturation relation by means of the Preisach operator, which makes the resulting evolutionary PDE strongly degenerate. We prove the existence and uniqueness of a strong global solution in arbitrary space dimension using a special weak convexity concept.

    Mathematics Subject Classification: 35K65, 47J40, 74N30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Typical experimental hysteresis dependence in porous media between the logarithm soil suction $ \psi $ and the volumetric water content $ \theta $

    Figure 2.  Evolution of the memory curve and of the hysteresis diagram associated with the input sequence $ 0 {\to} u_1 {\to} u_2 {\to} u_3 {\to} u_4 \to u_5 $

    Figure 3.  Backward time step in $ \Omega_+ $ (left) and in $ \Omega_- $ (right)

  • [1] B. Albers, Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: A review, Acta Mech., 225 (2014), 2163-2189.  doi: 10.1007/s00707-014-1122-4.
    [2] M. Al Saaideh, N. Alatawneh and M. Al Janaideh, A generalized Prandtl-Ishlinskii model for hysteresis modeling in electromagnetic devices, Proceedings of ECCE 2021 – IEEE Energy Conversion Congress and Exposition, Vancouver, Canada, (2021), 4513-4518.
    [3] M. BalatoS. PernaC. Petrarca and C. Visone, A simple scheme for the inversion of a Preisach like hysteresis operator in saturation conditions, AIP Adv., 12 (2022), 035047. 
    [4] G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Academic Press, New York, 1998.
    [5] O. V. Besov, V. P. Il'in and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DCHalsted Press, New York-Toronto-London, 1979.
    [6] B. Detmann and P. Krejčí, A multicomponent flow model in deformable porous media, Math. Methods Appl. Sci., 42 (2019), 1894-1906.  doi: 10.1002/mma.5482.
    [7] M. EleuteriJ. Kopfová and P. Krejčí, Magnetohydrodynamic flow with hysteresis, SIAM J. Math. Anal., 41 (2009), 435-464.  doi: 10.1137/080718383.
    [8] M. Eleuteri and P. Krejčí, Asymptotic behaviour of a Neumann parabolic problem with hysteresis, Z. Angew. Math. Mech., 87 (2007), 261-277.  doi: 10.1002/zamm.200610299.
    [9] E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ric. Mat., 8 (1959), 24-51. 
    [10] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math., 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011 doi: 10.1137/1.9781611972030.ch1.
    [11] M. Hilpert, On uniqueness for evolution problems with hysteresis, Mathematical Models for Phase Change Problems, Internat. Ser. Numer. Math., Birkhäuser Verlag, Basel, 88 (1989), 377-388. 
    [12] P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z., 193 (1986), 247-264.  doi: 10.1007/BF01174335.
    [13] P. Krejčí, The Preisach hysteresis model: Error bounds for numerical identification and inversion, Discrete Contin. Dyn. Syst. - S., 6 (2013), 101-119.  doi: 10.3934/dcdss.2013.6.101.
    [14] P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Int. Ser. Math. Sci. Appl., Vol. 8, Gakkōtosho, Tokyo, 1996.
    [15] K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities - A modified Prandtl-Ishlinskii approach, Eur. J. Control, 9 (2003), 407-418.  doi: 10.3166/ejc.9.407-418.
    [16] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, 13 (1959), 115-162. 
    [17] H. Q. PhamD. G. Fredlund and S. Lee Barbour, A study of hysteresis models for soil-water characteristic curves, Can. Geotech. J., 42 (2005), 1548-1568. 
    [18] F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302. 
    [19] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967.
    [20] M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Texts Appl. Math., 13. Springer-Verlag, New York, 2004.
    [21] B. Schweizer, Hysteresis in porous media: Modelling and analysis, Interfaces Free Boundaries, 19 (2017), 417-447.  doi: 10.4171/IFB/388.
    [22] A. Visintin, Differential Models of Hysteresis, Appl. Math. Sci., 111. Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(1181) PDF downloads(182) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return