Fluid diffusion in unsaturated porous media manifests strong hysteresis effects due to surface tension on the liquid-gas interface. We describe hysteresis in the pressure-saturation relation by means of the Preisach operator, which makes the resulting evolutionary PDE strongly degenerate. We prove the existence and uniqueness of a strong global solution in arbitrary space dimension using a special weak convexity concept.
Citation: |
[1] | B. Albers, Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: A review, Acta Mech., 225 (2014), 2163-2189. doi: 10.1007/s00707-014-1122-4. |
[2] | M. Al Saaideh, N. Alatawneh and M. Al Janaideh, A generalized Prandtl-Ishlinskii model for hysteresis modeling in electromagnetic devices, Proceedings of ECCE 2021 – IEEE Energy Conversion Congress and Exposition, Vancouver, Canada, (2021), 4513-4518. |
[3] | M. Balato, S. Perna, C. Petrarca and C. Visone, A simple scheme for the inversion of a Preisach like hysteresis operator in saturation conditions, AIP Adv., 12 (2022), 035047. |
[4] | G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers, Academic Press, New York, 1998. |
[5] | O. V. Besov, V. P. Il'in and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DCHalsted Press, New York-Toronto-London, 1979. |
[6] | B. Detmann and P. Krejčí, A multicomponent flow model in deformable porous media, Math. Methods Appl. Sci., 42 (2019), 1894-1906. doi: 10.1002/mma.5482. |
[7] | M. Eleuteri, J. Kopfová and P. Krejčí, Magnetohydrodynamic flow with hysteresis, SIAM J. Math. Anal., 41 (2009), 435-464. doi: 10.1137/080718383. |
[8] | M. Eleuteri and P. Krejčí, Asymptotic behaviour of a Neumann parabolic problem with hysteresis, Z. Angew. Math. Mech., 87 (2007), 261-277. doi: 10.1002/zamm.200610299. |
[9] | E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ric. Mat., 8 (1959), 24-51. |
[10] | P. Grisvard, Elliptic Problems in Nonsmooth Domains, Classics Appl. Math., 69. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011 doi: 10.1137/1.9781611972030.ch1. |
[11] | M. Hilpert, On uniqueness for evolution problems with hysteresis, Mathematical Models for Phase Change Problems, Internat. Ser. Numer. Math., Birkhäuser Verlag, Basel, 88 (1989), 377-388. |
[12] | P. Krejčí, Hysteresis and periodic solutions of semilinear and quasilinear wave equations, Math. Z., 193 (1986), 247-264. doi: 10.1007/BF01174335. |
[13] | P. Krejčí, The Preisach hysteresis model: Error bounds for numerical identification and inversion, Discrete Contin. Dyn. Syst. - S., 6 (2013), 101-119. doi: 10.3934/dcdss.2013.6.101. |
[14] | P. Krejčí, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Int. Ser. Math. Sci. Appl., Vol. 8, Gakkōtosho, Tokyo, 1996. |
[15] | K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities - A modified Prandtl-Ishlinskii approach, Eur. J. Control, 9 (2003), 407-418. doi: 10.3166/ejc.9.407-418. |
[16] | L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, 13 (1959), 115-162. |
[17] | H. Q. Pham, D. G. Fredlund and S. Lee Barbour, A study of hysteresis models for soil-water characteristic curves, Can. Geotech. J., 42 (2005), 1548-1568. |
[18] | F. Preisach, Über die magnetische Nachwirkung, Z. Phys., 94 (1935), 277-302. |
[19] | M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967. |
[20] | M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Texts Appl. Math., 13. Springer-Verlag, New York, 2004. |
[21] | B. Schweizer, Hysteresis in porous media: Modelling and analysis, Interfaces Free Boundaries, 19 (2017), 417-447. doi: 10.4171/IFB/388. |
[22] | A. Visintin, Differential Models of Hysteresis, Appl. Math. Sci., 111. Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-11557-2. |
Typical experimental hysteresis dependence in porous media between the logarithm soil suction
Evolution of the memory curve and of the hysteresis diagram associated with the input sequence
Backward time step in