In this paper, we investigate the large-time behavior of bounded solutions of the Cauchy problem for a reaction-diffusion equation in $ \mathbb{R}^N $ with bistable reaction term. We consider initial conditions that are chiefly indicator functions of bounded Borel sets. We examine how geometric transformations of the supports of these initial conditions affect the propagation or extinction of the solutions at large time. We also consider two fragmentation indices defined in the set of bounded Borel sets and we establish some propagation or extinction results when the initial supports are weakly or highly fragmented. Lastly, we show that the large-time dynamics of the solutions is not monotone with respect to the considered fragmentation indices, even for equimeasurable sets.
Citation: |
Figure 1. Evolution of the numerical solution $ u(t, x) $ of (1), with $ N = 1 $, $ f(s) = s(1-s)(s-\theta) $, and $ \theta = 0.4 $, starting with an initial condition $ u_0(x) = \mathbb{1}_E(x) $ with (left) $ E = E_1: = (-L/2, L/2) $ and (right) $ E = E_2: = \bigcup_{x\in{\mathbb{Z}} \cap [-k, k]}\Big[\frac{x}{z}+\Big(\!\!-\!\frac{\alpha}{2z}, \frac{\alpha}{2z}\Big)\Big] $. The curves correspond to the solution for $ t = 0 $, $ t = 0.05 $ and for $ t $ ranging from 4 to 80 with a step size of 4. The gradient color goes from blue for the earliest times to red for the latest times. In the left panel, $ \lambda(E_1) = L = 4.55 $ and $ \delta_1(E_1) = 0 $; in the right panel $ \alpha = 3/4 $, $ z = 2.16 $, $ k = 6 $, $ \lambda(E_2) = 4.52 $ and $ \delta_1(E_2) = 0.23 $. We observe here that, though $ z $ is not that large and $ \lambda(E_2) $ is even smaller than $ \lambda(E_1) $, fragmentation (right panel) improves invasion success. We also note that $ u(t, x)\approx \alpha \mathbb{1}_{B_R} $ with $ R = k/z+\alpha/(2 \, z) $ when $ t\ll 1 $. The Matlab code used for the computations is available at http://doi.org/10.17605/OSF.IO/ZM479
Figure 2. The two sets $ E_1 $ (in red) and $ E_2 $ (in blue) have the same Lebesgue measure $ \lambda(E_1) = \lambda(E_2) $. Invasion occurs for (1) with initial condition $ \mathbb{1}_{E_1} $ but not with $ \mathbb{1}_{E_2} $. To understand why $ 0<\delta_1(E_2)<\delta_1(E_1) $ for all $ |x| $ large enough, observe that the value of $ \max_{B\in\mathcal{B}, \, \lambda(B) = \lambda(E_1)}\lambda(E_1\cap B) $ corresponds in dimension $ N = 2 $ to the measure $ \lambda(E_1\cap \widetilde {B}) $ of the intersection between $ E_1 $ and the disk $ \widetilde {B} $ inside the dashed circle. For $ |x| $ large enough, the value of $ \max_{B\in\mathcal{B}, \, \lambda(B) = \lambda(E_2)}\lambda(E_2\cap B) $ simply corresponds to the measure of $ \lambda(E_2\cap \widetilde {B}) $, and is higher than $ \lambda(E_1\cap \widetilde {B}) = \max_{B\in\mathcal{B}, \, \lambda(B) = \lambda(E_1)}\lambda(E_1\cap B) $, hence $ \delta_1(E_2)<\delta_1(E_1) $. The details are provided below
[1] |
M. Alfaro, A. Ducrot and G. Faye, Quantitative estimates of the threshold phenomena for propagation in reaction diffusion equations, SIAM J. Appl. Dyn. Syst., 19 (2020), 1291-1311.
doi: 10.1137/19M1292187.![]() ![]() ![]() |
[2] |
L. Almeida, A. Hadon, C. Kermorvant, A. Léculier, Y. Privat, M. Strugarek, N. Vauchelet and J. P. Zubelli, Optimal release of mosquitoes to control dengue transmission, ESAIM Proc. Surveys, 67 (2020), 16-29.
doi: 10.1051/proc/202067002.![]() ![]() ![]() |
[3] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5.![]() ![]() ![]() |
[4] |
H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems. II: General domains, J. Amer. Math. Soc., 23 (2010), 1-34.
doi: 10.1090/S0894-0347-09-00633-X.![]() ![]() ![]() |
[5] |
M. Bramson, Convergence of Solutions of the Kolmogorov Equation to Travelling Waves, Mem. Amer. Math. Soc., 1983.
doi: 10.1090/memo/0285.![]() ![]() ![]() |
[6] |
Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problem, J. Europ. Math. Soc., 12 (2010), 279-312.
doi: 10.4171/JEMS/198.![]() ![]() ![]() |
[7] |
Y. Du and H. Matano, Radial terrace solutions and propagation profile of multistable reaction-diffusion equations over $ \mathbb{R}^N$, preprint, 2017, arXiv: 1711.00952.
![]() |
[8] |
Y. Du and P. Poláčik, Locally uniform convergence to an equilibrium for nonlinear parabolic equations on $ \mathbb{R}^N$, Indiana Univ. Math. J., 64 (2015), 787-824.
doi: 10.1512/iumj.2015.64.5535.![]() ![]() ![]() |
[9] |
A. Ducrot, On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly supported initial data, Nonlinearity, 28 (2015), 1043-1076.
doi: 10.1088/0951-7715/28/4/1043.![]() ![]() ![]() |
[10] |
P. C. Fife and J. B. McLeod, The approach of solutions of non-linear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal., 65 (1977), 335-361.
doi: 10.1007/BF00250432.![]() ![]() ![]() |
[11] |
R. A. Fisher, The advance of advantageous genes, Ann. Eugenics, 7 (1937), 335-369.
![]() |
[12] |
J. Garnier, L. Roques and F. Hamel, Success rate of a biological invasion in terms of the spatial distribution of the founding population, Bull. Math. Biol., 74 (2012), 453-473.
doi: 10.1007/s11538-011-9694-9.![]() ![]() ![]() |
[13] |
J. Gärtner, Location of wave fronts for the multi-dimensional KPP equation and Brownian first exit densities, Math. Nachr., 105 (1982), 317-351.
doi: 10.1002/mana.19821050117.![]() ![]() ![]() |
[14] |
F. Hamel, J. Nolen, J.-M. Roquejoffre and L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, 8 (2013), 275-289.
doi: 10.3934/nhm.2013.8.275.![]() ![]() ![]() |
[15] |
F. Hamel and L. Rossi, Spreading speeds and spreading sets of reaction-diffusion equations, preprint, 2022. arXiv: 2105.08344.
![]() |
[16] |
F. Hamel and L. Rossi, Asymptotic one-dimensional symmetry for the Fisher-KPP equation, preprint, 2022. arXiv: 2207.05147.
![]() |
[17] |
F. Hamel and L. Rossi, Spreading, flattening and logarithmic lag for reaction-diffusion equations in $ \mathbb{R}^N$: old and new results, preprint, 2023. arXiv: 2307.03555.
![]() |
[18] |
C. K. R. T. Jones, Spherically symmetric solutions of a reaction-diffusion equation, J. Diff. Equations, 49 (1983), 142-169.
doi: 10.1016/0022-0396(83)90023-2.![]() ![]() ![]() |
[19] |
J. I. Kanel', Stabilization of the solutions of the equations of combustion theory with finite initial functions, Mat. Sb. (N.S.), 65 (1964), 398-413.
![]() ![]() |
[20] |
A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Intern. A, 1 (1937), 1-26.
![]() |
[21] |
E. Krätzel, Lattice Points, Springer Science & Business Media, Springer, 1989.
![]() |
[22] |
K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov, J. Diff. Equations, 59 (1985), 44-70.
doi: 10.1016/0022-0396(85)90137-8.![]() ![]() ![]() |
[23] |
M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms, Theo. Pop. Biol., 43 (1983), 141-158.
![]() |
[24] |
H. Matano and M. Nara, Large time behavior of disturbed planar fronts in the Allen-Cahn equation, J. Diff. Equations, 251 (2011), 3522-3557.
doi: 10.1016/j.jde.2011.08.029.![]() ![]() ![]() |
[25] |
H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Part. Diff. Equations, 34 (2009), 976-1002.
doi: 10.1080/03605300902963500.![]() ![]() ![]() |
[26] |
H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part I: A general quasiconvergence theorem and its consequences, Comm. Part. Diff. Equations, 41 (2016), 785-811.
doi: 10.1080/03605302.2016.1156697.![]() ![]() ![]() |
[27] |
H. Matano and P. Poláčik, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part II: Generic nonlinearities, Comm. Part. Diff. Equations, 45 (2020), 483-524.
doi: 10.1080/03605302.2019.1700273.![]() ![]() ![]() |
[28] |
I. Mazari, G. Nadin and A. I. Toledo Marrero, Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisations, Nonlinearity, 34 (2021), 7510-7539.
doi: 10.1088/1361-6544/ac23b9.![]() ![]() ![]() |
[29] |
C. B. Muratov and X. Zhong, Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations, Nonlin. Diff. Equations Appl., 20 (2013), 1519-1552.
doi: 10.1007/s00030-013-0220-7.![]() ![]() ![]() |
[30] |
C. B. Muratov and X. Zhong, Threshold phenomena for symmetric-decreasing radial solutions of reaction-diffusion equations, Disc. Cont. Dyn. Syst. A, 37 (2017), 915-944.
doi: 10.3934/dcds.2017038.![]() ![]() ![]() |
[31] |
G. Nadin and A. I. Toledo Marrero, On the maximization problem for solutions of reaction-diffusion equations with respect to their initial data, Math. Model. Nat. Phenom., 15 (2020), Paper No. 71, 22 pp.
doi: 10.1051/mmnp/2020030.![]() ![]() ![]() |
[32] |
J. Nolen, J.-M. Roquejoffre and L. Ryzhik, Convergence to a single wave in the Fisher-KPP equation, Chinese Ann. Math. Ser. B (Special Issue in Honour of H. Brezis), 38 (2017), 629-646.
doi: 10.1007/s11401-017-1087-4.![]() ![]() ![]() |
[33] |
P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equations on $ \mathbb{R}^N$, Arch. Ration. Mech. Anal., 199 (2011), 69-97.
doi: 10.1007/s00205-010-0316-8.![]() ![]() ![]() |
[34] |
P. Poláčik, Convergence and quasiconvergence properties of solutions of parabolic equations on the real line: An overview, Patterns of Dynamics, Springer Proc. Math. Stat., 205, Springer, 2017,172-183.
doi: 10.1007/978-3-319-64173-7_11.![]() ![]() ![]() |
[35] |
P. Poláčik, Planar propagating terraces and the asymptotic one-dimensional symmetry of solutions of semilinear parabolic equations, SIAM J. Math. Anal., 49 (2017), 3716-3740.
doi: 10.1137/16M1100745.![]() ![]() ![]() |
[36] |
P. Poláčik, Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on $\mathbb{R}$, Mem. Amer. Math. Soc., 2020.
![]() |
[37] |
J.-M. Roquejoffre, L. Rossi and V. Roussier-Michon, Sharp large time behaviour in $N$-dimensional Fisher-KPP equations, Disc. Cont. Dyn. Syst. A, 39 (2019), 7265-7290.
doi: 10.3934/dcds.2019303.![]() ![]() ![]() |
[38] |
J.-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations, Ann. Mat. Pura Appl., 188 (2009), 207-233.
doi: 10.1007/s10231-008-0072-7.![]() ![]() ![]() |
[39] |
J.-M. Roquejoffre and V. Roussier-Michon, Nontrivial dynamics beyond the logarithmic shift in two-dimensional Fisher-KPP equations, Nonlinearity, 31 (2018), 3284-3307.
doi: 10.1088/1361-6544/aaba3b.![]() ![]() ![]() |
[40] |
J.-M. Roquejoffre and V. Roussier-Michon, Sharp large time behaviour in $N$-dimensional reaction-diffusion equations of bistable type, J. Diff. Equations, 339 (2022), 134-151.
doi: 10.1016/j.jde.2022.07.043.![]() ![]() ![]() |
[41] |
L. Rossi, Symmetrization and anti-symmetrization in reaction-diffusion equations, Proc. Amer. Math. Soc., 145 (2017), 2527-2537.
doi: 10.1090/proc/13391.![]() ![]() ![]() |
[42] |
L. Rossi, Stability analysis for semilinear parabolic problems in general unbounded domains, J. Funct. Anal., 279 (2020), 108657, 39 pp.
doi: 10.1016/j.jfa.2020.108657.![]() ![]() ![]() |
[43] |
V. Roussier, Stability of radially symmetric travelling waves in reaction-diffusion equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 21 (2004), 341-379.
doi: 10.1016/j.anihpc.2003.04.002.![]() ![]() ![]() |
[44] |
K. Uchiyama, The behavior of solutions of some semilinear diffusion equation for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.
doi: 10.1215/kjm/1250522506.![]() ![]() ![]() |
[45] |
K. Uchiyama, Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients, Arch. Ration. Mech. Anal., 90 (1985), 291-311.
doi: 10.1007/BF00276293.![]() ![]() ![]() |
[46] |
A. Zlatoš, Sharp transition between extinction and propagation of reaction, J. Amer. Math. Soc., 19 (2006), 251-263.
doi: 10.1090/S0894-0347-05-00504-7.![]() ![]() ![]() |
Evolution of the numerical solution
The two sets