\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Inhomogeneous finitely-strained thermoplasticity with hardening by an Eulerian approach

Dedicated to Pierluigi Colli on the occasion of his sixtyfifth birthday.

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • A standard elasto-plasto-dynamic model at finite strains based on the Lie-Liu-Kröner multiplicative decomposition, formulated in rates, is here enhanced to cope with spatially inhomogeneous materials by using the reference (called also return) mapping. Also an isotropic hardening can be involved. Consistent thermodynamics is formulated, allowing for both the free and the dissipation energies temperature dependent. The model complies with the energy balance and entropy inequality. A multipolar Stokes-like viscosity and plastic rate gradient are used to allow for a rigorous analysis towards existence of weak solutions by a semi-Galerkin approximation.

    Mathematics Subject Classification: 35Q74, 35Q79, 74A15, 74A30, 74C20, 74J30, 80A20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A schematic 0-dimensional diagramme of the mixed rheology acting differently on spherical (volumetric) and the deviatoric parts. The Jeffreys rheology in the deviatoric part combines Stokes' and Maxwell rheologies in parallel and may degenerate to mere Stokes-type fluid if $ {M} $ vanishes within melting. Note that the dampers $ K_{\rm V} $ and $ G_{\rm V} $ correspond to a simplified (2.45a) with $ \nu_1 = 0 $ and $ p = 2 $, i.e. with $ \boldsymbol D = \nu_0 \boldsymbol e(\boldsymbol v) $, for a special choice $ K_{\rm V} = 2\nu_0/d $ and $ G_{\rm V} = \nu_0 $

  • [1] J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. R. Soc. Edinburgh, Sect. A, 88 (1981), 315-328.  doi: 10.1017/S030821050002014X.
    [2] J. F. Besseling and E. van der Giessen, Mathematical Modelling of Inelastic Deformation, Chapman & Hall, London, 1994.
    [3] L. BoccardoA. Dall'AglioT. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237-258.  doi: 10.1006/jfan.1996.3040.
    [4] L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.
    [5] Y. Dafalias, The plastic spin concept and a simple illustration of its role in finite plastic transformations, Mech. Mater., 3 (1984), 223-233. 
    [6] E. de Souza Neto, D. Peric and D. Owen, Computational Methods for Plasticity: Theory and Applications, J.Wiley, Chichester, 2008.
    [7] E. Feireisl and J. Málek, On the navier-stokes equations with temperature-dependent transport coefficients, Diff. Equations Nonlin. Mech., (2006), Art. ID 90616, 14 pp. doi: 10.1155/denm/2006/90616.
    [8] M. Gurtin and L. Anand, The decomposition F = FeFp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous, Intl. J. Plast., 21 (2005), 1686-1719. 
    [9] M. GurtinE. Fried and  L. AnandThe Mechanics and Thermodynamics of Continua, Cambridge Univ. Press, New York, 2010. 
    [10] K. Hashiguchi, Nonlinear Continuum Mechanics for Finite Elesticity-Plasticity, Elsevier, Amsterdam, 2020.
    [11] K. Hashiguchi and Y. Yamakawa, Introduction to Finite Strain Theory for Continuum Elasto-Plasticity, J. Wiley, Chichester, 2013. doi: 10.1002/9781118437711.
    [12] K. KamrinC. H. Rycroft and J.-C. Nave, Reference map technique for finite-strain elasticity and fluid-solid interaction, J. Mech. Phys. Solids, 60 (2012), 1952-1969.  doi: 10.1016/j.jmps.2012.06.003.
    [13] A. Khan and S. Huang, Continuum Theory of Plasticity, Wiley, New York, 1995.
    [14] E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal., 4 (1960), 273-334.  doi: 10.1007/BF00281393.
    [15] M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019. doi: 10.1007/978-3-030-02065-1.
    [16] E. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech., 36 (1969), 1-6. 
    [17] E. Lee and D. Liu, Finite-strain elastic-plastic theory with application to plain-wave analysis, J. Applied Phys., 38 (1967), 19-27. 
    [18] G. A. MauginThe Thermomechanics of Plasticity and Fracture, Cambridge Univ. Press, Cambridge, 1992.  doi: 10.1017/CBO9781139172400.
    [19] G. A. Maugin and M. Epstein, Geometrical material structure of elastoplasticity, Intl. J. Plast., 14 (1998), 109-115.  doi: 10.1016/S0749-6419(97)00043-0.
    [20] A. Mielke, Energetic formulation of multiplicative elastoplasticity using dissipation distances, Contin. Mech. Thermodyn., 15 (2003), 351-382.  doi: 10.1007/s00161-003-0120-x.
    [21] K. R. Rajagopal and A. R. Srinivasa, On thermomechanical restrictions of continua, Proc. R. Soc. Lond. A, 460 (2004), 631-651.  doi: 10.1098/rspa.2002.1111.
    [22] T. Roubíček, Nonlinear Partial Differential Equations with Applications, 2nd edition, Birkhäuser, Basel, 2013.
    [23] T. Roubíček, Quasistatic hypoplasticity at large strains Eulerian, J. Nonlin. Sci., 32 (2022), Art.no.45.
    [24] T. Roubíček, Thermodynamics of viscoelastic solids, its Eulerian formulation, and existence of weak solutions, Preprint, arXiv: 2203.06080.
    [25] T. Roubíček, The Stefan problem in a thermomechanical context with fracture and fluid flow, Math. Meth. Appl. Sci., 46 (2023), 12217-12245.  doi: 10.1002/mma.8684.
    [26] J. C. Simo and T. J. R. Hughes, Computational Inelasticity, Springer, New york, 1998.
    [27] H. XiaoO. T. Bruhns and A. Meyers, A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient, Intl. J. Plast., 16 (2000), 143-177.  doi: 10.1016/S0749-6419(99)00045-5.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1214) PDF downloads(150) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return