In this work, we present a phase-field model for tumour growth, where a diffuse interface separates a tumour from the surrounding host tissue. In our model, we consider transport processes by an internal, non-solenoidal velocity field. We include viscoelastic effects with the help of a generalized Oldroyd-B type description with relaxation and possible stress generation by growth. The elastic energy density is coupled to the phase-field variable which allows to model invasive growth towards areas with less mechanical resistance. The main analytical result is the existence of weak solutions in two and three space dimensions in the case of additional stress diffusion. The idea behind the proof is to use a numerical approximation with a fully-practical, stable and (subsequence) converging finite element scheme. The physical properties of the model are preserved with the help of a regularization technique, uniform estimates and a limit passage on the fully-discrete level. Finally, we illustrate the practicability of the discrete scheme with the help of numerical simulations in two and three dimensions.
Citation: |
Figure 3. Snapshots of the first example with $ \kappa_t = 0 $. First row: $ \varphi_h^n $ at $ t = 0, 5, 10, 14 $, where $ \varphi_h^n = 1 $ (red) in the tumour tissue and $ \varphi_h^n = -1 $ (blue) in the host tissue. Second row: the nutrient $ \sigma_h^n $, $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and both eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 14 $
Figure 4. Snapshots of the first example with $ \kappa_t = 0.5 $. First row: $ \varphi_h^n $ at $ t = 0, 5, 10, 14 $, where $ \varphi_h^n = 1 $ (red) in the tumour tissue and $ \varphi_h^n = -1 $ (blue) in the host tissue. Second row: the nutrient $ \sigma_h^n $, $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and both eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 14 $
Figure 5. Snapshots of the first example with $ \kappa_t = -0.5 $. First row: $ \varphi_h^n $ at $ t = 0, 5, 10, 14 $, where $ \varphi_h^n = 1 $ (red) in the tumour tissue and $ \varphi_h^n = -1 $ (blue) in the host tissue. Second row: the nutrient $ \sigma_h^n $, $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and both eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 14 $
Figure 6. Snapshots of the second example with $ \kappa_t = -2 $. First row: $ \varphi_h^n $ at $ t = 0, 5, 10, 13.5 $, where $ \varphi_h^n = 1 $ (red) in the tumour tissue and $ \varphi_h^n = -1 $ (blue) in the host tissue. Second row: the nutrient $ \sigma_h^n $, $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and both eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 13.5 $
Figure 7. Snapshots of the second example with $ \kappa_t = -1 $. First row: $ \varphi_h^n $ at $ t = 0, 5, 10, 13.5 $, where $ \varphi_h^n = 1 $ (red) in the tumour tissue and $ \varphi_h^n = -1 $ (blue) in the host tissue. Second row: the nutrient $ \sigma_h^n $, $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and both eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 13.5 $
Figure 8. Snapshots of the second example with $ \kappa_t = 1 $. First row: $ \varphi_h^n $ at $ t = 0, 5, 10, 13.5 $, where $ \varphi_h^n = 1 $ (red) in the tumour tissue and $ \varphi_h^n = -1 $ (blue) in the host tissue. Second row: the nutrient $ \sigma_h^n $, $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and both eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 13.5 $
Figure 9. Snapshots of the example in 3d with $ \kappa_t = 0 $. First row: time evolution of the interface of $ \varphi_h^n $ at $ t = 0, 1, 2, 3 $, as well as $ \varphi_h^n $ with the corresponding mesh at $ t = 3 $. Second row: the nutrient $ \sigma_h^n $, the velocity magnitude $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and the three eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 3 $. A cut was taken along the plane with normal $ (1, 1, 0)^\top $ and origin $ (0, 0, 0)^\top $
Figure 10. Snapshots of the example in 3d with $ \kappa_t = 4 $. First row: time evolution of the interface of $ \varphi_h^n $ at $ t = 0, 1, 2, 3 $, as well as $ \varphi_h^n $ with the corresponding mesh at $ t = 3 $. Second row: the nutrient $ \sigma_h^n $, the velocity magnitude $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and the three eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 3 $. A cut was taken along the plane with normal $ (1, 1, 0)^\top $ and origin $ (0, 0, 0)^\top $
Figure 11. Snapshots of the example in 3d with $ \kappa_t = -5 $. First row: time evolution of the interface of $ \varphi_h^n $ at $ t = 0, 1, 2, 3 $, as well as $ \varphi_h^n $ with the corresponding mesh at $ t = 3 $. Second row: the nutrient $ \sigma_h^n $, the velocity magnitude $ \left\lvert{{ {\mathbf{v}}_h^n}}\right\rvert $ (with the velocity field $ {\mathbf{v}}_h^n $), and the three eigenvalues of $ {\mathbb{B}}_h^n $ at $ t = 3 $. A cut was taken along the plane with normal $ (1, 1, 0)^\top $ and origin $ (0, 0, 0)^\top $
[1] | H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22 (2012), 1150013, 40 pp. doi: 10.1142/S0218202511500138. |
[2] | A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn–Hilliard–type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626. doi: 10.1002/mma.4548. |
[3] | A. Agosti, C. Cattaneo, C. Giverso, D. Ambrosi and P. Ciarletta, A computational framework for the personalized clinical treatment of glioblastoma multiforme, ZAMM Z. Angew. Math. Mech., 98 (2018), 2307-2327. doi: 10.1002/zamm.201700294. |
[4] | A. Agosti, P. Colli, H. Garcke and E. Rocca, A Cahn–Hilliard model coupled to viscoelasticity with large deformations, preprint, 2022. arXiv: 2204.04951. |
[5] | A. Agosti, P. Colli, H. Garcke and E. Rocca, A Cahn–Hilliard phase field model coupled to an Allen–Cahn model of viscoelasticity at large strains, preprint, 2023. arXiv: 2301.08341. |
[6] | D. Ambrosi and L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours, Biomech. Model. Mechanobiol., 8 (2009), 397-413. |
[7] | S. Balay, et al., PETSc Users Manual, Argonne National Laboratory, Technical Report ANL-95/11 - Revision 3.15, 2021. |
[8] | J. W. Barrett and S. Boyaval, Existence and approximation of a (regularized) {Oldroyd-B} model, Math. Models Methods Appl. Sci., 21 (2011), 1783-1837. doi: 10.1142/S0218202511005581. |
[9] | J. W. Barrett and S. Boyaval, Finite element approximation of the FENE-P model, IMA J. Numer. Anal., 38 (2018), 1599-1660. doi: 10.1093/imanum/drx061. |
[10] | J. W. Barrett, Y. Lu and E. Süli, Existence of large-data finite-energy global weak solutions to a compressible Oldroyd-B model, Commun. Math. Sci., 15 (2017), 1265-1323. doi: 10.4310/CMS.2017.v15.n5.a5. |
[11] | J. W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces, IMA J. Numer. Anal., 24 (2004), 323-363. doi: 10.1093/imanum/24.2.323. |
[12] | J. W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Num. Anal., 42 (2004), 738-772. doi: 10.1137/S0036142902413421. |
[13] | J. W. Barrett and E. Süli, Finite element approximation of kinetic dilute polymer models with microscopic cut-off, ESAIM Math. Model. Numer. Anal., 45 (2011), 39-89. doi: 10.1051/m2an/2010030. |
[14] | S. Bartels, Numerical Approximation of Partial Differential Equations, 1$^{st}$ edition, Springer, Cham, 2016. doi: 10.1007/978-3-319-32354-1. |
[15] | M. Bathory, M. Bulíček and J. Málek, Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion, Adv. Nonlinear Anal., 10 (2021), 501-521. doi: 10.1515/anona-2020-0144. |
[16] | D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, 1$^{st}$ edition, Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-36519-5. |
[17] | S. C. Brenner L. R. and Scott, The Mathematical Theory of Finite Element Methods, 3$^{rd}$ edition, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0. |
[18] | D. Bresch, T. Colin, E. Grenier, B. Ribba and O. Saut, A viscoelastic model for avascular tumor growth, Discrete Contin. Dyn. Syst., 2009 (2009), 101-108. |
[19] | A. Brunk, Y. Lu and M. Lukáčová-Medvi$\breve{{\rm{d}}}$ová, Existence, regularity and weak-strong uniqueness for three-dimensional Peterlin viscoelastic model, Communications in Mathematical Sciences, 20 (2022), 201-230. doi: 10.4310/CMS.2022.v20.n1.a6. |
[20] | H. M. Byrne, Modelling avascular Tumour growth, Cancer Modelling and Simulation, Chapman & Hall/CRC Math. Biol. Med. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2003, 75-120. |
[21] | Y. Chen and J. S. Lowengrub, Tumor growth in complex, evolving microenvironmental geometries: A diffuse domain approach, J. Theoret. Biol., 361 (2014), 14-30. |
[22] | L. Chupin, Global strong solutions for some differential viscoelastic models, SIAM Journal on Applied Mathematics, 78 (2018), 2919-2949. doi: 10.1137/18M1186873. |
[23] | P. Constantin and M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., 206 (2012), 725-740. doi: 10.1007/s00205-012-0537-0. |
[24] | W. Dahmen and A. Reusken, Numerik für Ingenieure und Naturwissenschaftler, 2$^{nd}$ edition, Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-662-65181-0. |
[25] | M. Delarue, F. Montel, D. Vignjevic, J. Prost, J.-F. Joanny and G. Cappello, Compressive Stress Inhibits Proliferation in Tumor Spheroids through a Volume Limitation, Biophysical Journal, 107 (2014), 1821-1828. |
[26] | M. Dostalík, V. Průša and T. Skřivan, On diffusive variants of some classical viscoelastic rate-type models, AIP Conference Proceedings, 2107 (2019), 020002. |
[27] | K. Doubrovinski, M. Swan, O. Polyakov and E. F. Wieschaus, Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids, Proceedings of the National Academy of Sciences, 114 (2017), 1051-1056. |
[28] | M. Ebenbeck and H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differential Equations, 266 (2019), 5998-6036. doi: 10.1016/j.jde.2018.10.045. |
[29] | M. Ebenbeck, H. Garcke and R. Nürnberg, Cahn–Hilliard–Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 3989-4033. doi: 10.3934/dcdss.2021034. |
[30] | A. Eern and J.-L. Guermond, Theory and Practice of Finite Elements, 1$^{st}$ edition, Springer-Verlag, New York, 2004. doi: 10.1007/978-1-4757-4355-5. |
[31] | H. C. Elman, D. J. Silvester and A. J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2$^{nd}$ edition, Oxford University Press, Oxford, 2014. doi: 10.1093/acprof:oso/9780199678792.001.0001. |
[32] | L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, R.I., 2010. doi: 10.1090/gsm/019. |
[33] | G. Forgacs, R. A. Foty, Y. Shafrir and M. S. Steinberg, Viscoelastic Properties of Living Embryonic Tissues: A Quantitative Study, Biophysical Journal, 74 (1998), 2227-2234. |
[34] | S. Frigeri, M. Grasselli and E. Rocca, On a diffuse interface model of tumour growth, European J. Appl. Math., 26 (2015), 215-243. doi: 10.1017/S0956792514000436. |
[35] | S. Frigeri, K. F. Lam and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Springer INdAM Ser., 22, Springer, Cham, 2017,217-254. |
[36] | G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, 2$^{nd}$ edition, Springer, New York, 2011. doi: 10.1007/978-0-387-09620-9. |
[37] | H. Garcke, B. Kovács and D. Trautwein, Viscoelastic Cahn–Hilliard models for tumour growth, Math. Models Methods Appl. Sci., 32 (2022), 2673-2758. doi: 10.1142/S0218202522500634. |
[38] | H. Garcke and K. F. Lam, Well–posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, European J. Appl. Math., 28 (2017), 284-316. doi: 10.1017/S0956792516000292. |
[39] | H. Garcke, K. F. Lam, R. Nürnberg and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), 525-577. doi: 10.1142/S0218202518500148. |
[40] | H. Garcke, K. F. Lam and A. Signori, On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects, Nonlinear Anal. Real World Appl., 57 (2021), 103192, 28 pp. doi: 10.1016/j.nonrwa.2020.103192. |
[41] | H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148. doi: 10.1142/S0218202516500263. |
[42] | H. Garcke and D. Trautwein, Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, J. Numer. Math., 30 (2022), 295-324. doi: 10.1515/jnma-2021-0094. |
[43] | V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, 1$^{st}$ edition, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5. |
[44] | G. Grün and F. Klingbeil, Two-phase flow with mass density contrast: Stable schemes for a thermodynamically consistent and frame-indifferent diffuse-interface model, J. Comput. Phys., 257 (2014), 708-725. doi: 10.1016/j.jcp.2013.10.028. |
[45] | G. Helmlinger, P. A. Netti, H. C. Lichtenbeld, R. J. Melder and R. K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids, Nature Biotechnology, 15 (1997), 778-783. |
[46] | D. Hu and T. Lelièvre, New entropy estimates for the Oldroyd-B model and related models, Commun. Math. Sci., 5 (2007), 909-916. doi: 10.4310/CMS.2007.v5.n4.a9. |
[47] | P. Knopf and A. Signori, Existence of weak solutions to multiphase Cahn-Hilliard-Darcy and Cahn-Hilliard-Brinkman models for stratified tumor growth with chemotaxis and general source terms, Comm. Partial Differential Equations, 47 (2022), 233-278. doi: 10.1080/03605302.2021.1966803. |
[48] | L. LeGoff and T. Lecuit, Mechanical forces and growth in animal tissues, Cold Spring Harbor Perspectives in Biology, 8 (2016), a019232. |
[49] | Y. Liu and D. Trautwein, On a diffuse interface model for incompressible viscoelastic two-phase flows, preprint, 2022. arXiv: 2212.13507. |
[50] | A. Logg, K.-A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method, 1$^{st}$ edition, Springer, Berlin, Heidelberg, 2012. doi: 10.1007/978-3-642-23099-8. |
[51] | G. Lucci, A. Agosti, P. Ciarletta and C. Giverso, Coupling solid and fluid stresses with brain tumour growth and white matter tract deformations in a neuroimaging-informed model, Biomechanics and Modeling in Mechanobiology, 21 (2022), 1483-1509. |
[52] | M. Lukáčová-Medvid'ová, H. Mizerová, S. Nečasová and M. Renardy, Global existence result for the generalized Peterlin viscoelastic model, SIAM J. Math. Anal., 49 (2017), 2950-2964. doi: 10.1137/16M1068505. |
[53] | J. Málek and V. Průša, Derivation of equations for continuum mechanics and thermodynamics of fluids, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Springer, Cham, 2018, 3-72. doi: 10.1007/978-3-319-13344-7_1. |
[54] | Y. Mao, A. L. Tournier, A. Hoppe, L. Kester, B. J. Thompson and N. Tapon, Differential proliferation rates generate patterns of mechanical tension that orient tissue growth, The EMBO Journal, 32 (2013), 2790-2803. |
[55] | S. Metzger, On convergent schemes for two-phase flow of dilute polymeric solutions, ESAIM: Math. Model. Numer. Anal., 52 (2018), 2357-2408. doi: 10.1051/m2an/2018042. |
[56] | H. T. Nia, H. Liu, G. Seano, M. Datta, D. Jones, N. Rahbari, J. Incio, V. P. Chauhan, K. Jung, J. D. Martin and et al., Solid stress and elastic energy as measures of tumour mechanopathology, Nature Biomedical Engineering, 1 (2016), 0004. |
[57] | J. M. Northcott, I. S. Dean, J. K. Mouw and V. M. Weaver, Feeling stress: The mechanics of cancer progression and aggression, Frontiers in Cell and Developmental Biology, 6 (2018), 17. |
[58] | J. T. Oden, A. Hawkins and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), 477-517. doi: 10.1142/S0218202510004313. |
[59] | K. R. Rajagopal and A. R. Srinivasa, A thermodynamic framework for rate-type fluid models, Journal of Non-Newtonian Fluid Mechanics, 88 (2000), 207-227. |
[60] | O. Sieber, On convergent schemes for a two-phase Oldroyd-B type model with variable polymer density, J. Numer. Math., 28 (2020), 99-129. doi: 10.1515/jnma-2019-0019. |
[61] | J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4), 146 (1986), 65-96. doi: 10.1007/BF01762360. |
[62] | R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343. |
[63] | C. Voutouri, F. Mpekris, P. Papageorgis, A. D. Odysseos and T. Stylianopoulos, Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors, PLoS ONE, 9 (2014), e104717. |
[64] | S. M. Wise, J. S. Lowengrub, H. B. Frieboes and V. Cristini, Three-dimensional multispecies nonlinear tumor growth–-I: Model and numerical method, J. Theoret. Biol., 253 (2008), 524-543. doi: 10.1016/j.jtbi.2008.03.027. |
[65] | H. Yan, D. Ramirez-Guerrero, J. Lowengrub and M. Wu, Stress generation, relaxation and size control in confined tumor growth, PLoS. Comput. Biol., 17 (2021), e1009701. |
Typical setting for phase-field models, where a smooth interface with width related to
Framework of multiple configurations
Snapshots of the first example with
Snapshots of the first example with
Snapshots of the first example with
Snapshots of the second example with
Snapshots of the second example with
Snapshots of the second example with
Snapshots of the example in 3d with
Snapshots of the example in 3d with
Snapshots of the example in 3d with