\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two approaches to instability analysis of the viscous Burgers' equation

  • *Corresponding author: Burhan Tiryakioglu

    *Corresponding author: Burhan Tiryakioglu

Dedicated to Yihong Du on the occasion of his 60th birthday.

Abstract / Introduction Full Text(HTML) Figure(4) / Table(1) Related Papers Cited by
  • The 1D Burger's equation with Dirichlet boundary conditions exhibits a first transition from the trivial steady state to a sinusoidal patterned steady state as the parameter $ \lambda $ which controls the linear term exceeds 1. The main goal of this paper is to present two different approaches regarding the transition of this patterned steady state. We believe that these approaches can be extended to study the dynamics of more interesting models. As a first approach, we consider an external forcing on the equation which supports a sinusoidal solution as a stable steady state which loses its stability at a critical threshold. We use the method of continued fractions to rigorously analyze the associated linear problem. In particular, we find that the system exhibits a mixed type transition with two distinct basins for initial conditions one of which leads to a local steady state and the other leaves a small neighborhood of the origin. As a second approach, we consider the dynamics on the center-unstable manifold of the first two modes of the unforced system. In this approach, the secondary transition produces two branches of steady state solutions. On one of these branches there is another transition which indicates a symmetry breaking phenomena.

    Mathematics Subject Classification: Primary: 37L10, 70K50; Secondary: 30B70.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The first eigenvalue of (9)

    Figure 2.  The first three eigenvalues of (9)

    Figure 3.  he 3D bifurcation diagram of the system (19) in the $ (u_1, u_2, \lambda) $ space with $ \alpha = 1 $. The black, blue and red steady states are respectively the trivial, mixed and pure steady state solutions

    Figure 4.  Bifurcation diagram for (18) when $ \alpha = 1 $

    Table 1.  The coordinates of the nontrivial branching point which connects the "mixed" solution branches with "pure" solution branches

    Third order truncation Fourth order truncation
    Nontrivial branching point $ (u_1, u_2, \lambda)=(0, 5.81, 6.35) $ $ (u_1, u_2, \lambda)=(0, 5.50, 6.14) $
     | Show Table
    DownLoad: CSV
  • [1] D. ArmbrusterJ. Guckenheimer and P. Holmes, Heteroclinic cycles and modulated travelling waves in systems with O(2) symmetry, Physica D: Nonlinear Phenomena, 29 (1988), 257-282.  doi: 10.1016/0167-2789(88)90032-2.
    [2] D. ArmbrusterJ. Guckenheimer and P. Holmes, Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM Journal on Applied Mathematics, 49 (1989), 676-691.  doi: 10.1137/0149039.
    [3] D. ArmbrusterB. NicolaenkoN. Smaoui and P. Chossat, Symmetries and dynamics for 2-D Navier-Stokes flow, Physica D: Nonlinear Phenomena, 95 (1996), 81-93.  doi: 10.1016/0167-2789(96)00006-1.
    [4] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, 1 (1948), 171-199. 
    [5] Z.-M. Chen, Bifurcations of a steady-state solution to the two-dimensional Navier-Stokes equations, Communications in Mathematical Physics, 201 (1999), 117-138.  doi: 10.1007/s002200050551.
    [6] Z.-M. Chen, Hopf bifurcation of the three-dimensional Navier-Stokes equations, Journal of Mathematical Analysis and Applications, 237 (1999), 583-608.  doi: 10.1006/jmaa.1999.6491.
    [7] Z.-M. ChenM. GhilE. Simonnet and S. Wang, Hopf bifurcation in quasi-geostrophic channel flow, SIAM Journal on Applied Mathematics, 64 (2003), 343-368.  doi: 10.1137/S0036139902406164.
    [8] A. DhoogeW. Govaerts and Yu. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Transactions on Mathematical Software, 29 (2003), 141-164.  doi: 10.1145/779359.779362.
    [9] T. A. Driscoll, N. Hale and L. N. Trefethen, Chebfun Guide, Pafnuty Publications, Oxford, 2014.
    [10] C.-H. Hsia and X. Wang, On a Burgers' type equation, Discrete Continuous Dynamical Systems - B, 6 (2006), 1121-1139.  doi: 10.3934/dcdsb.2006.6.1121.
    [11] L. Li and K. W. Ong, Dynamic transitions of generalized Burgers equation, Journal of Mathematical Fluid Mechanics, 18 (2016), 89-102.  doi: 10.1007/s00021-015-0240-7.
    [12] M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1955), 317-345.  doi: 10.1098/rspa.1955.0089.
    [13] C. Lu, Y. Mao, T. Sengul and Q. Wang, On the spectral instability and bifurcation of the 2D-quasi- geostrophic potential vorticity equation with a generalized Kolmogorov forcing, Physica D: Nonlinear Phenomena, 403 (2020), 132296, 18 pp. doi: 10.1016/j.physd.2019.132296.
    [14] T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science Series A, 2005. doi: 10.1142/9789812701152.
    [15] T. Ma and S. Wang, Phase Transition Dynamics, Springer International Publishing, Cham, 2019. doi: 10.1007/978-3-030-29260-7.
    [16] Y. Mao, Z. Chen, C. Kieu and Q. Wang, On the stability and bifurcation of the non-rotating Boussinesq equation with the Kolmogorov forcing at a low Péclet number, Communications in Nonlinear Science and Numerical Simulation, 89 (2020), 105322, 17 pp. doi: 10.1016/j.cnsns.2020.105322.
    [17] L. D. Meshalkin and J. G. Sinai, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid, Journal of Mathematical Analysis and Applications, 25 (1961), 1700-1705.  doi: 10.1016/0021-8928(62)90149-1.
    [18] Z. Pan, T. Sengul and Q. Wang, On the viscous instabilities and transitions of two-layer model with a layered topography, Communications in Nonlinear Science and Numerical Simulation, 80 (2020), 104978, 19 pp. doi: 10.1016/j.cnsns.2019.104978.
    [19] T. Sengul and B. Tiryakioglu, Dynamic transitions and bifurcations of 1D reaction-diffusion equations: The self-adjoint case, Mathematical Methods in the Applied Sciences, 45 (2022), 2871-2892.  doi: 10.1002/mma.7959.
    [20] E. B. Van Vleck, On the convergence of continued fractions with complex elements, Transactions of the American Mathematical Society, 2 (1901), 215-233.  doi: 10.1090/S0002-9947-1901-1500565-4.
  • 加载中

Figures(4)

Tables(1)

SHARE

Article Metrics

HTML views(1295) PDF downloads(430) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return