\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a two-scale phasefield model for topology optimization

  • *Corresponding author: Robert Lasarzik

    *Corresponding author: Robert Lasarzik

Dedicated to Pierluigi Colli on the occasion of his 65th birthday

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • In this article, we consider a gradient flow stemming from a problem in two-scale topology optimization. We use the phase-field method, where a Ginzburg–Landau term with obstacle potential is added to the cost functional, which contains the usual compliance but also an additional contribution including a local volume constraint in a penalty term. The minimization of such an energy by its gradient-flow is analyzed in this paper. We use an regularization and discretization of the associated state-variable to show the existence of weak solutions to the considered system.

    Mathematics Subject Classification: Primary: 35K61, 35M33, 35Q93, 49Q10 74P05, 74P10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Result of a pseudo-time stepping scheme for two-scale topology optimization for an MBB beam. The iteration numbers 1, 10, 20, 30, 40, 50, and 100 are displayed

    Figure 2.  Approximation $ \psi_\beta $ of the double obstacle potential $ \psi $ for three different values of $ \beta $

  • [1] G. Allaire, Shape Optimization by the Homogenization Method, volume 146 of Appl. Math. Sci., New York, NY, Springer, 2002. doi: 10.1007/978-1-4684-9286-6.
    [2] L. BaňasR. Lasarzik and A. Prohl, Numerical analysis for nematic electrolytes, IMA Journal of Numerical Analysis, 41 (2021), 2186-2254.  doi: 10.1093/imanum/draa082.
    [3] L. BlankH. GarckeM. H. Farshbaf-Shaker and V. Styles, Relating phase field and sharp interface approaches to structural topology optimization, ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 1025-1058.  doi: 10.1051/cocv/2014006.
    [4] L. Blank, H. Garcke, L. Sarbu, T. Srisupattarawanit, V. Styles and A. Voigt, Phase-field approaches to structural topology optimization, in Constrained Optimization and Optimal Control for Partial Differential Equations, Basel, Birkhäuser, (2012), 245-256. doi: 10.1007/978-3-0348-0133-1_13.
    [5] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy part II: Numerical analysis, European Journal of Applied Mathematics, 3 (1992), 147-179.  doi: 10.1017/S0956792500000759.
    [6] B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization, ESAIM, Control Optim. Calc. Var., 9 (2003), 19-48.  doi: 10.1051/cocv:2002070.
    [7] D. BraessFinite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2007.  doi: 10.1017/CBO9780511618635.
    [8] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
    [9] M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints, SIAM J. Control Optim., 45 (2006), 1447-1466.  doi: 10.1137/05062723X.
    [10] M. CarraturoE. RoccaE. BonettiD. HömbergA. Reali and F. Auricchio, Graded-material design based on phase-field and topology optimization, Computational Mechanics, 64 (2019), 1589-1600.  doi: 10.1007/s00466-019-01736-w.
    [11] A. ClausenN. Aage and O. Sigmund, Topology optimization of coated structures and material interface problems, Computer Methods in Applied Mechanics and Engineering, 290 (2015), 524-541.  doi: 10.1016/j.cma.2015.02.011.
    [12] F. Demengel, G. Demengel and R. Erné, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, 2012. doi: 10.1007/978-1-4471-2807-6.
    [13] R. Denk, M. Hieber and J. Prüss, ${\mathcal R}$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, volume 788 of Mem. Am. Math. Soc., Providence, RI: American Mathematical Society (AMS), 2003. doi: 10.1090/memo/0788.
    [14] M. Ebeling-RumpD. Hömberg and R. Lasarzik, Two-scale topology optimization with heterogeneous mesostructures based on a local volume constraint, Computers & Mathematics with Applications, 126 (2022), 100-114.  doi: 10.1016/j.camwa.2022.09.004.
    [15] E. Feireisl and A. Novotny, Singular Limits in Thermodynamics of Viscous Fluids, volume 2. Springer, 2009. doi: 10.1007/978-3-7643-8843-0.
    [16] C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage, European Journal of Applied Mathematics, 24 (2013), 179-211.  doi: 10.1017/S095679251200037X.
    [17] R. HerzogC. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382 (2011), 802-813.  doi: 10.1016/j.jmaa.2011.04.074.
    [18] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, volume 23. American Mathematical Society, 1988.
    [19] R. Lasarzik, Dissipative solution to the Ericksen–Leslie system equipped with the Oseen-Frank energy, Zeitschrift für Angewandte Mathematik und Physik, 70 (2019), 1-39. doi: 10.1007/s00033-018-1053-3.
    [20] R. Lasarzik, Maximally dissipative solutions for incompressible fluid dynamics, Zeitschrift für Angewandte Mathematik und Physik, 73 (2022), 1-21. doi: 10.1007/s00033-021-01628-1.
    [21] R. LasarzikE. Rocca and G. Schimperna, Weak solutions and weak-strong uniqueness for a thermodynamically consistent phase-field model, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, 33 (2022), 229-269.  doi: 10.4171/RLM/970.
    [22] D. LiW. LiaoN. DaiG. DongY. Tang and Y. M. Xie, Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing, Computer-Aided Design, 104 (2018), 87-99.  doi: 10.1016/j.cad.2018.06.003.
    [23] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications: I, volume 181, Springer Science & Business Media, 2012.
    [24] L. LuA. SharfH. ZhaoY. WeiQ. FanX. ChenY. SavoyeC. TuD. Cohen-Or and B. Chen, Build-to-last: Strength to weight 3D printed objects, ACM Transactions on Graphics (TOG), 33 (2014), 1-10.  doi: 10.1145/2601097.2601168.
    [25] D. H. Pahr and A. G. Reisinger, A review on recent advances in the constitutive modeling of bone tissue, Current Osteoporosis Reports, 18 (2020), 696-704.  doi: 10.1007/s11914-020-00631-1.
    [26] A. PanesarM. AbdiD. Hickman and I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Additive Manufacturing, 19 (2018), 81-94.  doi: 10.1016/j.addma.2017.11.008.
    [27] E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage, M$^3$ AS. Mathematical Models & Methods in Applied Sciences, 24 (2014), 1265-1341.  doi: 10.1142/S021820251450002X.
    [28] T. Roubiček, Nonlinear Partial Differential Equations with Applications, volume 153, Springer Science & Business Media, 2013.
    [29] F. TamburrinoS. Graziosi and M. Bordegoni, The design process of additively manufactured mesoscale lattice structures: A review, Journal of Computing and Information Science in Engineering, 18 (2018), 040801.  doi: 10.1115/1.4040131.
    [30] J. WuN. AageR. Westermann and O. Sigmund, Infill optimization for additive manufacturing - approaching bone-like porous structures, IEEE Transactions on Visualization and Computer Graphics, 24 (2018), 1127-1140.  doi: 10.1109/TVCG.2017.2655523.
    [31] E. Zeidler, Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators, Springer, New York, NY, 1990.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2496) PDF downloads(144) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return