In this article, we consider a gradient flow stemming from a problem in two-scale topology optimization. We use the phase-field method, where a Ginzburg–Landau term with obstacle potential is added to the cost functional, which contains the usual compliance but also an additional contribution including a local volume constraint in a penalty term. The minimization of such an energy by its gradient-flow is analyzed in this paper. We use an regularization and discretization of the associated state-variable to show the existence of weak solutions to the considered system.
| Citation: |
| [1] |
G. Allaire, Shape Optimization by the Homogenization Method, volume 146 of Appl. Math. Sci., New York, NY, Springer, 2002.
doi: 10.1007/978-1-4684-9286-6.
|
| [2] |
L. Baňas, R. Lasarzik and A. Prohl, Numerical analysis for nematic electrolytes, IMA Journal of Numerical Analysis, 41 (2021), 2186-2254.
doi: 10.1093/imanum/draa082.
|
| [3] |
L. Blank, H. Garcke, M. H. Farshbaf-Shaker and V. Styles, Relating phase field and sharp interface approaches to structural topology optimization, ESAIM: Control, Optimisation and Calculus of Variations, 20 (2014), 1025-1058.
doi: 10.1051/cocv/2014006.
|
| [4] |
L. Blank, H. Garcke, L. Sarbu, T. Srisupattarawanit, V. Styles and A. Voigt, Phase-field approaches to structural topology optimization, in Constrained Optimization and Optimal Control for Partial Differential Equations, Basel, Birkhäuser, (2012), 245-256.
doi: 10.1007/978-3-0348-0133-1_13.
|
| [5] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy part II: Numerical analysis, European Journal of Applied Mathematics, 3 (1992), 147-179.
doi: 10.1017/S0956792500000759.
|
| [6] |
B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization, ESAIM, Control Optim. Calc. Var., 9 (2003), 19-48.
doi: 10.1051/cocv:2002070.
|
| [7] |
D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, 2007.
doi: 10.1017/CBO9780511618635.
|
| [8] |
H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
|
| [9] |
M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints, SIAM J. Control Optim., 45 (2006), 1447-1466.
doi: 10.1137/05062723X.
|
| [10] |
M. Carraturo, E. Rocca, E. Bonetti, D. Hömberg, A. Reali and F. Auricchio, Graded-material design based on phase-field and topology optimization, Computational Mechanics, 64 (2019), 1589-1600.
doi: 10.1007/s00466-019-01736-w.
|
| [11] |
A. Clausen, N. Aage and O. Sigmund, Topology optimization of coated structures and material interface problems, Computer Methods in Applied Mechanics and Engineering, 290 (2015), 524-541.
doi: 10.1016/j.cma.2015.02.011.
|
| [12] |
F. Demengel, G. Demengel and R. Erné, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, 2012.
doi: 10.1007/978-1-4471-2807-6.
|
| [13] |
R. Denk, M. Hieber and J. Prüss, ${\mathcal R}$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type, volume 788 of Mem. Am. Math. Soc., Providence, RI: American Mathematical Society (AMS), 2003.
doi: 10.1090/memo/0788.
|
| [14] |
M. Ebeling-Rump, D. Hömberg and R. Lasarzik, Two-scale topology optimization with heterogeneous mesostructures based on a local volume constraint, Computers & Mathematics with Applications, 126 (2022), 100-114.
doi: 10.1016/j.camwa.2022.09.004.
|
| [15] |
E. Feireisl and A. Novotny, Singular Limits in Thermodynamics of Viscous Fluids, volume 2. Springer, 2009.
doi: 10.1007/978-3-7643-8843-0.
|
| [16] |
C. Heinemann and C. Kraus, Existence results for diffuse interface models describing phase separation and damage, European Journal of Applied Mathematics, 24 (2013), 179-211.
doi: 10.1017/S095679251200037X.
|
| [17] |
R. Herzog, C. Meyer and G. Wachsmuth, Integrability of displacement and stresses in linear and nonlinear elasticity with mixed boundary conditions, Journal of Mathematical Analysis and Applications, 382 (2011), 802-813.
doi: 10.1016/j.jmaa.2011.04.074.
|
| [18] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, volume 23. American Mathematical Society, 1988.
|
| [19] |
R. Lasarzik, Dissipative solution to the Ericksen–Leslie system equipped with the Oseen-Frank energy, Zeitschrift für Angewandte Mathematik und Physik, 70 (2019), 1-39.
doi: 10.1007/s00033-018-1053-3.
|
| [20] |
R. Lasarzik, Maximally dissipative solutions for incompressible fluid dynamics, Zeitschrift für Angewandte Mathematik und Physik, 73 (2022), 1-21.
doi: 10.1007/s00033-021-01628-1.
|
| [21] |
R. Lasarzik, E. Rocca and G. Schimperna, Weak solutions and weak-strong uniqueness for a thermodynamically consistent phase-field model, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Serie IX. Rendiconti Lincei. Matematica e Applicazioni, 33 (2022), 229-269.
doi: 10.4171/RLM/970.
|
| [22] |
D. Li, W. Liao, N. Dai, G. Dong, Y. Tang and Y. M. Xie, Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing, Computer-Aided Design, 104 (2018), 87-99.
doi: 10.1016/j.cad.2018.06.003.
|
| [23] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications: I, volume 181, Springer Science & Business Media, 2012.
|
| [24] |
L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or and B. Chen, Build-to-last: Strength to weight 3D printed objects, ACM Transactions on Graphics (TOG), 33 (2014), 1-10.
doi: 10.1145/2601097.2601168.
|
| [25] |
D. H. Pahr and A. G. Reisinger, A review on recent advances in the constitutive modeling of bone tissue, Current Osteoporosis Reports, 18 (2020), 696-704.
doi: 10.1007/s11914-020-00631-1.
|
| [26] |
A. Panesar, M. Abdi, D. Hickman and I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing, Additive Manufacturing, 19 (2018), 81-94.
doi: 10.1016/j.addma.2017.11.008.
|
| [27] |
E. Rocca and R. Rossi, A degenerating PDE system for phase transitions and damage, M$^3$ AS. Mathematical Models & Methods in Applied Sciences, 24 (2014), 1265-1341.
doi: 10.1142/S021820251450002X.
|
| [28] |
T. Roubiček, Nonlinear Partial Differential Equations with Applications, volume 153, Springer Science & Business Media, 2013.
|
| [29] |
F. Tamburrino, S. Graziosi and M. Bordegoni, The design process of additively manufactured mesoscale lattice structures: A review, Journal of Computing and Information Science in Engineering, 18 (2018), 040801.
doi: 10.1115/1.4040131.
|
| [30] |
J. Wu, N. Aage, R. Westermann and O. Sigmund, Infill optimization for additive manufacturing - approaching bone-like porous structures, IEEE Transactions on Visualization and Computer Graphics, 24 (2018), 1127-1140.
doi: 10.1109/TVCG.2017.2655523.
|
| [31] |
E. Zeidler, Nonlinear Functional Analysis and its Applications: II/B: Nonlinear Monotone Operators, Springer, New York, NY, 1990.
|
Result of a pseudo-time stepping scheme for two-scale topology optimization for an MBB beam. The iteration numbers 1, 10, 20, 30, 40, 50, and 100 are displayed
Approximation