\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Abstract action spaces and their topological and dynamic properties

  • *Corresponding author: Riccarda Rossi

    *Corresponding author: Riccarda Rossi 

Dedicated to Pierluigi Colli on the occasion of his 65th birthday

R.R. acknowledges support from the PRIN project PRIN 2020: "Mathematics for Industry 4.0". G.S. acknowledges support from the PRIN project "PRIN 202244A7YL: Gradient Flows and Non-Smooth Geometric Structures with Applications to Optimization and Machine Learning".

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We introduce the concept of action space, a set $ \boldsymbol{X} $ endowed with an action cost $ \mathsf a:(0,+\infty)\times \boldsymbol{X}\times \boldsymbol{X}\to [0,+\infty) $ satisfying suitable axioms, which turn out to provide a 'dynamic' generalization of the classical notion of metric space. Action costs naturally arise as dissipation terms featuring in the Minimizing Movement scheme for gradient flows, which can then be settled in general action spaces.

    As in the case of metric spaces, we will show that action costs induce an intrinsic topological and metric structure on $ \boldsymbol{X} $. Moreover, we introduce the related action functional on paths in $ \boldsymbol{X} $, investigate the properties of curves of finite action, and discuss their absolute continuity. Finally, under a condition akin to the approximate mid-point property for metric spaces, we provide a dynamic interpretation of action costs.

    Mathematics Subject Classification: Primary: 35A15; Secondary: 34K30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246. 
    [2] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, 2$^{nd}$ edition, Birkhäuser Verlag, Basel, 2008.
    [3] J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.  doi: 10.1007/s002110050002.
    [4] N. Bourbaki, General Topology. Chapters 1–4, Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.
    [5] N. Bourbaki, General Topology. Chapters 5–10, Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation.
    [6] I. V. ChenchiahM. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces, Nonlinear Anal., 71 (2009), 5820-5834.  doi: 10.1016/j.na.2009.05.006.
    [7] E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for Partial Differential Equations and Applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98.
    [8] J. DolbeaultB. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231.  doi: 10.1007/s00526-008-0182-5.
    [9] A. FigalliW. Gangbo and T. Yolcu, A variational method for a class of parabolic PDEs, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (2011), 207-252. 
    [10] J. Maas, Gradient flows of the entropy for finite Markov chains, Journal of Functional Analysis, 26 (2011), 2250-2292.  doi: 10.1016/j.jfa.2011.06.009.
    [11] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.
    [12] A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 48 (2013), 1-31.  doi: 10.1007/s00526-012-0538-8.
    [13] A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.
    [14] A. MielkeR. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.
    [15] A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, volume 193 of Applied Mathematical Sciences, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.
    [16] M. A. Peletier, R. Rossi, G. Savaré and O. Tse, Jump processes as generalized gradient flows, Calc. Var. Partial Differential Equations, 61 (2022), Paper No. 33, 85 pp. doi: 10.1007/s00526-021-02130-2.
    [17] R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 97-169. 
    [18] M. Valadier, Young measures, Methods of Nonconvex Analysis (Varenna, 1989), A. Cellina editor, Springer, Berlin, 1990,152-188. doi: 10.1007/BFb0084935.
  • 加载中
SHARE

Article Metrics

HTML views(1462) PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return