\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mathematical and numerical challenges in diffuse optical tomography inverse problems

  • *Corresponding author: Cecilia Cavaterra

    *Corresponding author: Cecilia Cavaterra 

Dedicated to Pierluigi Colli on the occasion of his 65th birthday

Abstract / Introduction Full Text(HTML) Figure(9) / Table(2) Related Papers Cited by
  • Computed Tomography (CT) is an essential imaging tool for medical inspection, diagnosis and prevention. While X-rays CT is a consolidated technology, there is nowadays a strong drive for innovation in this field. Between the emerging topics, Diffuse Optical Tomography (DOT) is an instance of Diffuse Optical Imaging which uses non-ionizing light in the near-infrared (NIR) band as investigating signal. Non-trivial challenges accompany DOT reconstruction, which is a severely ill-conditioned inverse problem due to the highly scattering nature of the propagation of light in biological tissues. Correspondingly, the solution of this problem is far from being trivial. In this review paper, we first recall the theoretical basis of NIR light propagation, the relevant mathematical models with their derivation in the perspective of a hierarchy of modeling approaches and the analytical results on the uniqueness issue and stability estimates. Then we describe the state-of-the-art in analytic theory and in computational and algorithmic methods. We present a survey of the few contributions regarding DOT reconstruction aided by machine learning approaches and we conclude providing perspectives in the mathematical treatment of this highly challenging problem.

    Mathematics Subject Classification: Primary: 35R30, 68T05, 68T07, 92C55, 65M32.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  a) Main physical phenomena occurring in light propagation in biological tissues, turbid media characterized by a highly complex structure; b) absorption by a single particle; c) scattering by a single particle

    Figure 2.  Notation for a single scattering event: light incides at position $ {\bf{r}} $ from direction $ \widehat{ {\bf{s}}}^\prime $ and is scattered in direction $ \widehat{ {\bf{s}}} $ around a cone of angle $ d\widehat{ {\bf{s}}}^\prime $

    Figure 3.  Geometry and position of sources and detectors used in the numerical tests in the: (a) 2D setting and (b) 3D setting

    Figure 4.  Reconstruction with contrast regions with the same (a) or different (b) strength. In the second case the algorithm struggles to obtain a good quality both in terms of localization and intensity

    Figure 5.  Results for test cases ⅰ), ⅱ), ⅲ) in column–wise order. Top to bottom: Tikhonov regularization, Bregman procedure coupled with 2–norm, pure LASSO approach, Bregman coupled with 1–norm and elastic–net procedure with $ \alpha = 0.5 $

    Figure 6.  Results in the 2D test setting with: (a) no enforcement of Robin boundary conditions on the background solution; (b): enforcement of Robin boundary conditions on the background solution via the MFS strategy. The red circle represents the exact location of the contrast region

    Figure 7.  Results in the 3D test setting with: (a) no enforcement of Robin boundary conditions on the background solution; (b): enforcement of Robin boundary conditions on the background solution via the MFS strategy. The red circle represents the exact location of the contrast region

    Figure 8.  Improvement (right) of the spatial resolution in the 3D geometry using as soft-prior a first rough estimation of the position of the contrast region from a coarse voxelization (left)

    Figure 9.  Classes of existing DL-based approach for DOT reconstruction: a) methods of this family are fully data-driven. Sometimes the loss function used in the training of the net can be enriched with physically motivated constraints; b) methods of this family partially rely on physical models that can produce a first guess for the solution and then are supported by nets which improve it

    Table 1.  Symbols (organized into macro-areas) and relative significance as used in the text

    Nomenclature Description
    Geometrical quantities
    $ d $ spatial dimension (=2, 3)
    $ {\bf{r}} $ position vector
    $ \widehat{ {\bf{s}}}\, ^\prime, \widehat{ {\bf{s}}} $ in, out coming light directions
    $ d\widehat{ {\bf{s}}} $ solid angle around direction $ \widehat{ {\bf{s}}} $
    $ S^{d-1} $ unit sphere in $ \mathbb{R}^d $
    Physical model parameters
    $ \nu $ refraction coefficient
    $ \mu_s, \mu_s^\prime $ scattering coefficient, reduced scattering coefficient
    $ D $, $ \mu_a $ diffusion and absorption coefficient
    $ L $, $ u $ light radiance (RTE model), fluence (DA model)
    $ p_s(\widehat{ {\bf{s}}}, \widehat{ {\bf{s}}}\, ^\prime) $, $ g $ normalized scattering phase function, avg cosine of scatter
    $ \delta $ noise level
    Functional spaces and operators
    $ Q, U, Y $ optical properties, optical field and data Banach spaces
    $ \Theta $ generic parameter space
    $ \mathcal{M}: D(\mathcal{M}) \subset (Q \times U) \rightarrow Y $ measurement map
    $ \mathcal{F}: \Theta \rightarrow Y $ forward map
    $ \mathcal{D}: Y \rightarrow [0, \infty] $ discrepancy measure
    $ \mathcal{R}: \Theta \rightarrow [0, \infty] $ regularization functional (with parameter $ \lambda $)
    Other mathematical symbols
    $ \Omega $, $ \partial \Omega $ computational domain, boundary of the domain
    $ {\bf{n}} $ unit normal vector on $ \partial \Omega $
    Discretization parameters
    $ h $ mesh size
     | Show Table
    DownLoad: CSV

    Table 2.  ACR (binned according to the intensity of the contrast region) and TPR metrics for different noise levels for the Learned-SVD [31] and for comparison the Elastic Net and Bregman variational approaches. Values are averaged over 150 test samples. Noise level 5% is not considered for the variational approaches due to the extreme difficulty to obtain a sensible reconstruction

    Noise Level $ {3\mu_{a, 0}} $ (GT: 3e-2) $ {4\mu_{a, 0}} $ (GT: 4e-2) $ {5\mu_{a, 0}} $ (GT: 5e-02) TPR
    Learned-SVD
    0% 3.05e-02 $ \pm $ 2.00e-03 4.08e-02 $ \pm $ 3.72e-03 4.74e-02 $ \pm $ 2.19e-03 0.94
    1% 3.07e-02 $ \pm $ 2.77e-03 3.76e-02 $ \pm $ 5.54e-03 4.38e-02 $ \pm $ 4.01e-03 0.76
    3% 3.06e-02 $ \pm $ 5.56e-03 3.61e-02 $ \pm $ 6.10e-03 4.11e-02 $ \pm $ 4.65e-03 0.52
    5% 3.00e-02 $ \pm $ 3.82e-03 3.15e-02 $ \pm $ 4.44e-03 3.39e-02 $ \pm $ 6.04e-03 0.46
    Elastic Net
    0% 2.73e-02 $ \pm $ 4.74e-03 3.45e-02 $ \pm $ 4.96e-03 3.90e-02 $ \pm $ 8.69e-03 0.45
    1% 2.91e-02 $ \pm $ 9.36e-03 4.30e-02 $ \pm $ 8.70e-03 5.01e-02 $ \pm $ 9.80e-03 0.17
    3% 9.55e-02 $ \pm $ 1.92e-02 1.25e-01 $ \pm $ 2.83e-02 1.23e-01 $ \pm $ 3.36e-02 0.05
    Bregman
    0% 4.02e-02 $ \pm $ 8.95e-03 5.93e-02 $ \pm $ 1.61e-02 8.54e-02 $ \pm $ 2.98e-02 0.26
    1% 4.77e-02 $ \pm $ 1.81e-02 5.85e-02 $ \pm $ 1.84e-02 8.34e-02 $ \pm $ 2.85e-02 0.17
    3% 1.28e-01 $ \pm $ 5.50e-02 1.45e-01 $ \pm $ 9.06e-02 1.36e-01 $ \pm $ 6.80e-02 0.03
     | Show Table
    DownLoad: CSV
  • [1] E. Abuelhia and A. Alghamdi, Evaluation of arising exposure of ionizing radiation from computed tomography and the associated health concerns, Journal of Radiation Research and Applied Sciences, 13 (2020), 295-300.  doi: 10.1080/16878507.2020.1728962.
    [2] C. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018. doi: 10.1007/978-3-319-94463-0.
    [3] V. Agoshkov, Boundary Value Problems for Transport Equations, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Basel, 1998. doi: 10.1007/978-1-4612-1994-1.
    [4] G. S. Alberti and H. Ammari, Disjoint sparsity for signal separation and applications to hybrid inverse problems in medical imaging, Appl. Comput. Harmon. Anal., 42 (2017), 319-349.  doi: 10.1016/j.acha.2015.08.013.
    [5] G. S. Alberti and Y. Capdeboscq, Lectures on Elliptic Methods for Hybrid Inverse Problems, volume 25 of Cours Spécialisés [Specialized Courses], Société Mathématique de France, Paris, 2018.
    [6] G. S. Alberti and M. Santacesaria, Calderón's inverse problem with a finite number of measurements, Forum Math. Sigma, 7 (2019), Paper No. e35, 20 pp. doi: 10.1017/fms.2019.31.
    [7] G. S. Alberti and M. Santacesaria, Calderón's inverse problem with a finite number of measurements II: Independent data, Appl. Anal., 101 (2022), 3636-3654.  doi: 10.1080/00036811.2020.1745192.
    [8] G. S. Alberti and M. Santacesaria, Infinite-dimensional inverse problems with finite measurements, Arch. Ration. Mech. Anal., 243 (2022), 1-31.  doi: 10.1007/s00205-021-01718-4.
    [9] G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.  doi: 10.1080/00036818808839730.
    [10] G. AlessandriniM. Di CristoE. Francini and S. Vessella, Stability for quantitative photoacoustic tomography with well-chosen illuminations, Ann. Mat. Pura Appl. (4), 196 (2017), 395-406.  doi: 10.1007/s10231-016-0577-4.
    [11] M. AlthobaitiH. Vavadi and Q. Zhu, Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix, Journal of Biomedical Optics, 22 (2017), 026002.  doi: 10.1117/1.JBO.22.2.026002.
    [12] H. Ammari, An Introduction to Mathematics of Emerging Biomedical Imaging, volume 62 of Mathématiques & Applications (Berlin) [Mathematics & Applications]., Springer, Berlin, 2008.
    [13] H. AmmariE. BossyV. Jugnon and H. Kang, Reconstruction of the optical absorption coefficient of a small absorber from the absorbed energy density, SIAM J. Appl. Math., 71 (2011), 676-693.  doi: 10.1137/09077905X.
    [14] M. B. ApplegateR. E. IstfanS. SpinkA. Tank and D. Roblyer, Recent advances in high speed diffuse optical imaging in biomedicine, APL Photonics, 5 (2020), 040802.  doi: 10.1063/1.5139647.
    [15] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41. doi: 10.1088/0266-5611/15/2/022.
    [16] S. R. ArridgeJ. P. KaipioV. KolehmainenM. SchweigerE. SomersaloT. Tarvainen and M. Vauhkonen, Approximation errors and model reduction with an application in optical diffusion tomography, Inverse Problems, 22 (2006), 175-195.  doi: 10.1088/0266-5611/22/1/010.
    [17] S. R. Arridge, J. P. Kaipio, V. Kolehmainen and T. Tarvainen, Optical imaging, in Handbook of Mathematical Methods in Imaging. Vol. 1, 2, 3, Springer, New York, (2015), 1033-1079.
    [18] S. R. Arridge and W. R. B. Lionheart, Nonuniqueness in diffusion-based optical tomography, Opt. Lett., 23 (1998), 882-884.  doi: 10.1364/OL.23.000882.
    [19] S. ArridgeP. MaassO. Öktem and C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numer., 28 (2019), 1-174.  doi: 10.1017/S0962492919000059.
    [20] S. R. Arridge and J. C. Schotland, Optical tomography: forward and inverse problems, Inverse Problems, 25 (2009), 123010.  doi: 10.1088/0266-5611/25/12/123010.
    [21] A. AspriE. BerettaO. Scherzer and M. Muszkieta, Asymptotic expansions for higher order elliptic equations with an application to quantitative photoacoustic tomography, SIAM J. Imaging Sci., 13 (2020), 1781-1833.  doi: 10.1137/20M1317062.
    [22] A. Aspri, Y. Korolev and O. Scherzer, Data driven regularization by projection, Inverse Problems, 36 (2020), 125009, 35 pp. doi: 10.1088/1361-6420/abb61b.
    [23] K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299.  doi: 10.4007/annals.2006.163.265.
    [24] G. Bal and K. Ren, Multi-source quantitative photoacoustic tomography in a diffusive regime, Inverse Problems, 27 (2011), 075003, 20 pp. doi: 10.1088/0266-5611/27/7/075003.
    [25] G. Bal and K. Ren, Non-uniqueness result for a hybrid inverse problem, in Tomography and inverse transport theory, volume 559 of Contemp. Math., Amer. Math. Soc., Providence, RI, (2011), 29-38. doi: 10.1090/conm/559/11069.
    [26] G. Bal and K. Ren, On multi-spectral quantitative photoacoustic tomography in diffusive regime, Inverse Problems, 28 (2012), 025010, 13 pp. doi: 10.1088/0266-5611/28/2/025010.
    [27] G. Bal and G. Uhlmann, Inverse diffusion theory of photoacoustics, Inverse Problems, 26 (2010), 085010, 20. doi: 10.1088/0266-5611/26/8/085010.
    [28] G. Bal and G. Uhlmann, Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions, Comm. Pure Appl. Math., 66 (2013), 1629-1652.  doi: 10.1002/cpa.21453.
    [29] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2 (2009), 183-202.  doi: 10.1137/080716542.
    [30] A. BenfenatiP. CausinM. G. Lupieri and G. Naldi, Regularization techniques for inverse problem in DOT applications, Journal of Physics: Conference Series, 1476 (2020), 012007.  doi: 10.1088/1742-6596/1476/1/012007.
    [31] A. Benfenati, G. Bisazza and P. Causin, A learned-SVD approach for regularization in diffuse optical tomography, arXiv preprint, arXiv: 2111.13401, 2021.
    [32] A. Benfenati and V. Ruggiero, Inexact Bregman iteration with an application to Poisson data reconstruction, Inverse Problems, 29 (2013), 065016, 31 pp. doi: 10.1088/0266-5611/29/6/065016.
    [33] M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numerica, 27 (2018), 1-111.  doi: 10.1017/S0962492918000016.
    [34] E. Beretta, M. Muszkieta, W. Naetar and O. Scherzer, A variational method for quantitative photoacoustic tomography with piecewise constant coefficients, in Variational Methods, volume 18 of Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, (2017), 202-224.
    [35] M. Bertero, P. Boccacci, G. Talenti, R. Zanella and L. Zanni, A discrepancy principle for Poisson data, Inverse Problems, 26 (2010), 105004, 20 pp. doi: 10.1088/0266-5611/26/10/105004.
    [36] D. A. Boas, A fundamental limitation of linearized algorithms for diffuse optical tomography, Opt. Express, 1 (1997), 404-413. 
    [37] D. A. BoasT. Gaudette and S. R. Arridge, Simultaneous imaging and optode calibration with diffuse optical tomography, Optics Express, 8 (2001), 263-270.  doi: 10.1364/OE.8.000263.
    [38] Y. E. Boink and C. Brune, Learned SVD: Solving inverse problems via hybrid autoencoding, CoRR, abs/1912.10840, 2019.
    [39] E. Bonnetier, M. Choulli and F. Triki, Stability for quantitative photoacoustic tomography revisited, Res. Math. Sci., 9 (2022), Paper No. 24, 30 pp. doi: 10.1007/s40687-022-00322-6.
    [40] A.-P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, (1980), 65-73.
    [41] N. CaoA. Nehorai and M. Jacob, Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm, Opt. Express, 15 (2007), 13695-13708.  doi: 10.1364/OE.15.013695.
    [42] P. Caro and K. M. Rogers, Global uniqueness for the Calderón problem with Lipschitz conductivities, Forum Math. Pi, 4 (2016), e2, 28 pp. doi: 10.1017/fmp.2015.9.
    [43] C. M. Carpenter and H. Dehghani, in European Conference on Biomedical Optics, Optica Publishing Group, (2007), 6629_56.
    [44] K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley Educational Publishers Inc., US, 1967.
    [45] J. L. CastellanosS. Gómez and V. Guerra, The triangle method for finding the corner of the L-curve, Applied Numerical Mathematics, 43 (2002), 359-373.  doi: 10.1016/S0168-9274(01)00179-9.
    [46] P. Causin, M. G. Lupieri, G. Naldi and R.-M. Weishaeupl, Mathematical and numerical challenges in optical screening of female breast, International Journal for Numerical Methods in Biomedical Engineering, 36 (2020), e3286, 16 pp. doi: 10.1002/cnm.3286.
    [47] A. E. CerussiA. J. BergerF. BevilacquaN. ShahD. JakubowskiJ. ButlerR. F. Holcombe and B. J. Tromberg, Sources of absorption and scattering contrast for near-infrared optical mammography, Academic Radiology, 8 (2001), 211-218.  doi: 10.1016/S1076-6332(03)80529-9.
    [48] A. ChambolleV. CasellesD. CremersM. Novaga and T. Pock, An introduction to total variation for image analysis, Theoretical Foundations and Numerical Methods for Sparse Recovery, 9 (2010), 263-340.  doi: 10.1515/9783110226157.263.
    [49] G. Chen, F. Zhu and P. A. Heng, An efficient statistical method for image noise level estimation, in 2015 IEEE International Conference on Computer Vision (ICCV), (2015), 477-485. doi: 10.1109/ICCV.2015.62.
    [50] M. Choulli, Some stability inequalities for hybrid inverse problems, C. R. Math. Acad. Sci. Paris, 359 (2021), 1251-1265.  doi: 10.5802/crmath.262.
    [51] M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation, Osaka Journal of Mathematics, 36 (1999), 87-104. 
    [52] B. T. CoxS. R. ArridgeK. P. Köstli and P. C. Beard, Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method, Appl. Opt., 45 (2006), 1866-1875.  doi: 10.1364/AO.45.001866.
    [53] J. CurranR. GaburroC. Nolan and E. Somersalo, Time-harmonic diffuse optical tomography: Hölder stability of the derivatives of the optical properties of a medium at the boundary, Inverse Problems and Imaging, 17 (2023), 338-361. 
    [54] H. DehghaniS. SrinivasanB. W. Pogue and A. Gibson, Numerical modelling and image reconstruction in diffuse optical tomography, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (2009), 3073-3093.  doi: 10.1098/rsta.2009.0090.
    [55] B. Deng, H. Gu and S. A. Carp, Deep learning enabled high-speed image reconstruction for breast diffuse optical tomography, in Optical Tomography and Spectroscopy of Tissue XIV, International Society for Optics and Photonics, 11639 (2021), 116390B. doi: 10.1117/12.2577736.
    [56] O. DoevaR. GaburroW. R. B. Lionheart and C. J. Nolan, Lipschitz stability at the boundary for time-harmonic diffuse optical tomography, Appl. Anal., 101 (2022), 3697-3715.  doi: 10.1080/00036811.2020.1758314.
    [57] F. DubotY. FavennecB. Rousseau and D. R. Rousse, Regularization opportunities for the diffuse optical tomography problem, International Journal of Thermal Sciences, 98 (2015), 1-23.  doi: 10.1016/j.ijthermalsci.2015.06.015.
    [58] W. G. Egan and T. W. Hilgeman, editors, Optical properties of inhomogeneous materials, Academic Press, (1979), 221-226.
    [59] P. ElbauL. Mindrinos and O. Scherzer, Inverse problems of combined photoacoustic and optical coherence tomography, Math. Methods Appl. Sci., 40 (2017), 505-522.  doi: 10.1002/mma.3915.
    [60] P. Elbau, L. Mindrinos and O. Scherzer, Quantitative reconstructions in multi-modal photoacoustic and optical coherence tomography imaging, Inverse Problems, 34 (2018), 014006, 22 pp. doi: 10.1088/1361-6420/aa9ae7.
    [61] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, Springer Netherlands, 1996.
    [62] J. FengQ. SunZ. LiZ. Sun and K. Jia, Back-propagation neural network-based reconstruction algorithm for diffuse optical tomography, Journal of Biomedical Optics, 24 (2018), 051407.  doi: 10.1117/1.JBO.24.5.051407.
    [63] E. FerocinoA. PifferiS. ArridgeF. MartelliP. Taroni and A. Farina, Multi simulation platform for time domain diffuse optical tomography: An application to a compact hand-held reflectance probe, Applied Sciences, 9 (2019), 2849.  doi: 10.3390/app9142849.
    [64] S. Foschiatti, Lipschitz stability estimate for the simultaneous recovery of two coefficients in the anisotropic Schrödinger type equation via local Cauchy data, J. Math. Anal. Appl., 531 (2024), Paper No. 127753, 35 pp. doi: 10.1016/j.jmaa.2023.127753.
    [65] S. Foschiatti and E. Sincich, Stable determination of an anisotropic inclusion in the Schrödinger equation from local Cauchy data, Inverse Probl. Imaging, 17 (2023), 584-613.  doi: 10.3934/ipi.2022063.
    [66] R. J. Fretterd and R. L. Longini, Diffusion dipole source, JOSA, 63 (1973), 336-337.  doi: 10.1364/JOSA.63.000336.
    [67] J. FriedmanT. Hastie and R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, 33 (2010), 1-22.  doi: 10.18637/jss.v033.i01.
    [68] R. Gaburro, Stable determination at the boundary of the optical properties of a medium: The static case, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 407-431.  doi: 10.13137/2464-8728/13204.
    [69] H. Gao, S. Osher and H. Zhao, Quantitative photoacoustic tomography, in Mathematical Modeling in Biomedical Imaging. II, 2035 of Lecture Notes in Math., Springer, Heidelberg, (2012), 131-158. doi: 10.1007/978-3-642-22990-9_5.
    [70] A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging, Physics in Medicine Biology, 50 (2005), R1. doi: 10.1088/0031-9155/50/4/R01.
    [71] G. H. Golub and U. Von Matt, Generalized cross-validation for large-scale problems, Journal of Computational and Graphical Statistics, 6 (1997), 1-34.  doi: 10.2307/1390722.
    [72] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Springer, 2016.
    [73] R. Guo, J. Jiang and Y. Li, Learn an index operator by CNN for solving diffusive optical tomography: a deep direct sampling method, J. Sci. Comput., 95 (2023), no.1, Paper No. 31, 24 pp. doi: 10.1007/s10915-023-02115-7.
    [74] B. Haberman and D. Tataru, Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., 162 (2013), 496-516.  doi: 10.1215/00127094-2019591.
    [75] J. Hadamard, Sur les problèmes aux dérivés partielles et leur signification physique, Princeton University Bulletin, 13 (1902), 49-52. 
    [76] M. HaltmeierL. NeumannL. Nguyen and S. Rabanser, Analysis of the linearized problem of quantitative photoacoustic tomography, SIAM J. Appl. Math., 78 (2018), 457-478.  doi: 10.1137/16M1109291.
    [77] M. Haltmeier, L. Neumann and S. Rabanser, Single-stage reconstruction algorithm for quantitative photoacoustic tomography, Inverse Problems, 31 (2015), 065005, 24 pp. doi: 10.1088/0266-5611/31/6/065005.
    [78] M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT Numerical Mathematics, 36 (1996), 287-301.  doi: 10.1007/BF01731984.
    [79] P. C. Hansen, T. K. Jensen and G. Rodriguez, An adaptive pruning algorithm for the discrete L-curve criterion, Journal of Computational and Applied Mathematics, 198 (2007), 483-492. Special Issue: Applied Computational Inverse Problems. doi: 10.1016/j.cam.2005.09.026.
    [80] P. C. Hansen, J. G. Nagy and D. P. O'Leary, Deblurring Images: Matrices, Spectra, and Filtering, Fundamentals of Algorithms. Society for Industrial and Applied Mathematics, 2006. doi: 10.1137/1.9780898718874.
    [81] P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM Journal on Scientific Computing, 14 (1993), 1487-1503.  doi: 10.1137/0914086.
    [82] B. Harrach, On uniqueness in diffuse optical tomography, Inverse Problems, 25 (2009), 055010, 14 pp. doi: 10.1088/0266-5611/25/5/055010.
    [83] B. Harrach, Simultaneous determination of the diffusion and absorption coefficient from boundary data, Inverse Probl. Imaging, 6 (2012), 663-679.  doi: 10.3934/ipi.2012.6.663.
    [84] B. Harrach, Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Problems, 35 (2019), 024005, 19 pp. doi: 10.1088/1361-6420/aaf6fc.
    [85] J. HeinoS. ArridgeJ. Sikora and E. Somersalo, Anisotropic effects in highly scattering media, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 68 (2003), 319081-319088.  doi: 10.1103/PhysRevE.68.031908.
    [86] J. Heino and E. Somersalo, Estimation of optical absorption in anisotropic background, Inverse Problems, 18 (2002), 559-573.  doi: 10.1088/0266-5611/18/3/304.
    [87] L. G. Henyey and J. L. Greenstein, Diffuse radiation in the galaxy, Astrophysical Journal, 93 (1941), 70-83.  doi: 10.1086/144246.
    [88] A. H. HielscherA. Y. BluestoneG. S. AbdoulaevA. D. KloseJ. LaskerM. StewartU. Netz and J. Beuthan, Near-infrared diffuse optical tomography, Disease Markers, 18 (2002), 313-337.  doi: 10.1155/2002/164252.
    [89] Y. Hoshi and Y. Yamada, Overview of diffuse optical tomography and its clinical applications, Journal of Biomedical Optics, 21 (2016), 091312.  doi: 10.1117/1.JBO.21.9.091312.
    [90] M. IkedaR. MakinoK. ImaiM. Matsumoto and R. Hitomi, A method for estimating noise variance of CT image, Computerized Medical Imaging and Graphics, 34 (2010), 642-650.  doi: 10.1016/j.compmedimag.2010.07.005.
    [91] V. Isakov, Inverse Problems for Partial Differential Equations, volume 127 of Applied Mathematical Sciences, Springer, Cham, third edition, 2017. doi: 10.1007/978-3-319-51658-5.
    [92] A. Ishimaru, Theory and application of wave propagation and scattering in random media, Proceedings of the IEEE, 65 (1977), 1030-1061. 
    [93] S. L. JacquesC. A. Alter and S. A. Prahl, Angular dependence of HeNe laser light scattering by human dermis, Lasers Life Sci., 1 (1987), 309-333. 
    [94] R. P. K. Jagannath and P. K. Yalavarthy, Minimal residual method provides optimal regularization parameter for diffuse optical tomography, Journal of Biomedical Optics, 17 (2012), 106015.  doi: 10.1117/1.JBO.17.10.106015.
    [95] A. K. JhaY. ZhuS. ArridgeD. F. Wong and A. Rahmim, Incorporating reflection boundary conditions in the neumann series radiative transport equation: Application to photon propagation and reconstruction in diffuse optical imaging, Biomed. Opt. Express, 9 (2018), 1389-1407.  doi: 10.1364/BOE.9.001389.
    [96] B. JinY. Zhao and J. Zou, Iterative parameter choice by discrepancy principle, IMA Journal of Numerical Analysis, 32 (2012), 1714-1732.  doi: 10.1093/imanum/drr051.
    [97] J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, volume 160 of Applied Mathematical Sciences, Springer-Verlag, New York, 2005.
    [98] B. Kaltenbacher, Regularization based on all-at-once formulations for inverse problems, SIAM J. Numer. Anal., 54 (2016), 2594-2618.  doi: 10.1137/16M1060984.
    [99] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298.  doi: 10.1002/cpa.3160370302.
    [100] R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements. II. Interior results, Comm. Pure Appl. Math., 38 (1985), 643-667.  doi: 10.1002/cpa.3160380513.
    [101] S. D. KoneckyG. Y. PanasyukK. LeeV. MarkelA. G. Yodh and J. C. Schotland, Imaging complex structures with diffuse light, Optics Express, 16 (2008), 5048-5060.  doi: 10.1364/OE.16.005048.
    [102] F. LarussonS. Fantini and E. L. Miller, Hyperspectral image reconstruction for diffuse optical tomography, Biomed. Opt. Express, 2 (2011), 946-965.  doi: 10.1364/BOE.2.000946.
    [103] K. Lee, Optical mammography: Diffuse optical imaging of breast cancer, World Journal of Clinical Oncology, 2 (2011), 64-72.  doi: 10.5306/wjco.v2.i1.64.
    [104] D. R. LeffO. J. WarrenL. C. EnfieldA. GibsonT. AthanasiouD. K. PattenJ. HebdenG. Yang and A. Darzi, Diffuse optical imaging of the healthy and diseased breast: A systematic review, Breast Cancer Research and Treatment, 108 (2008), 9-22.  doi: 10.1007/s10549-007-9582-z.
    [105] J. LiZ. XieG. LiuL. Yang and J. Zou, Diffusion optical tomography reconstruction based on convex-nonconvex graph total variation regularization, Mathematical Methods in the Applied Sciences, 46 (2023), 4534-4545.  doi: 10.1002/mma.8777.
    [106] L. Li, C. Chen and B. Bi, A new total variational regularization method for nonlinear inverse problems in fluorescence molecular tomography, Journal of Computational and Applied Mathematics, 365 (2020), 112408, 14 pp. doi: 10.1016/j.cam.2019.112408.
    [107] P. A. Lo and H. K. Chiang, Three-dimensional fluorescence diffuse optical tomography using the adaptive spatial prior approach, Journal of Medical and Biological Engineering, 39 (2019), 827-834.  doi: 10.1007/s40846-019-00465-y.
    [108] J. R. Lorenzo, Principles of Diffuse Light Propagation: Light Propagation in Tissues with Applications in Biology and Medicine, World Scientific, 2012. doi: 10.1142/7609.
    [109] W. LuJ. DuanD. Orive-MiguelL. Herve and I. B. Styles, Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography, Biomed. Opt. Express, 10 (2019), 2684-2707.  doi: 10.1364/BOE.10.002684.
    [110] M. Machida, The inverse Rytov series for diffuse optical tomography, Inverse Problems, 39 (2023), 105012, 20 pp.
    [111] M. MozumderA. HauptmannI. NissiläS. R. Arridge and T. Tarvainen, A model-based iterative learning approach for diffuse optical tomography, IEEE Transactions on Medical Imaging, 41 (2022), 1289-1299.  doi: 10.1109/TMI.2021.3136461.
    [112] A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math. (2), 143 (1996), 71-96.  doi: 10.2307/2118653.
    [113] W. Naetar and O. Scherzer, Quantitative photoacoustic tomography with piecewise constant material parameters, SIAM J. Imaging Sci., 7 (2014), 1755-1774.  doi: 10.1137/140959705.
    [114] I. Nissilä, T. Noponen, J. Heino, T. Kajava and T. Katila, Diffuse Optical Imaging, Springer US, Boston, MA, (2005), 77-129.
    [115] S. Okawa and Y. Hoshi, A review of image reconstruction algorithms for diffuse optical tomography, Applied Sciences, 13 (2023), 5016.  doi: 10.3390/app13085016.
    [116] R. Patra and P. K. Dutta, Improved DOT reconstruction by estimating the inclusion location using artificial neural network, in Medical Imaging 2013: Physics of Medical Imaging, International Society for Optics and Photonics, 8668 (2013), 86684C. doi: 10.1117/12.2007905.
    [117] A. Pulkkinen, B. T. Cox, S. R. Arridge, J. P. Kaipio and T. Tarvainen, A Bayesian approach to spectral quantitative photoacoustic tomography, Inverse Problems, 30 (2014), 065012, 18 pp. doi: 10.1088/0266-5611/30/6/065012.
    [118] A. PulkkinenV. KolehmainenJ. P. KaipioB. T. CoxS. R. Arridge and T. Tarvainen, Approximate marginalization of unknown scattering in quantitative photoacoustic tomography, Inverse Probl. Imaging, 8 (2014), 811-829.  doi: 10.3934/ipi.2014.8.811.
    [119] J. RadfordA. LyonsF. Tonolini and D. Faccio, Role of late photons in diffuse optical imaging, Opt. Express, 28 (2020), 29486-29495.  doi: 10.1364/OE.402503.
    [120] K. RenG. Bal and A. H. Hielscher, Frequency domain optical tomography based on the equation of radiative transfer, SIAM J. Sci. Comput., 28 (2006), 1463-1489.  doi: 10.1137/040619193.
    [121] K. RenH. Gao and H. Zhao, A hybrid reconstruction method for quantitative PAT, SIAM J. Imaging Sci., 6 (2013), 32-55.  doi: 10.1137/120866130.
    [122] J. L. Sandell and T. C. Zhu, A review of in-vivo optical properties of human tissues and its impact on PDT, Journal of Biophotonics, 4 (2011), 773-787. 
    [123] O. Scherzer, editor, Handbook of Mathematical Methods in Imaging. Vol. 1, 2, 3, Springer, New York, second edition, 2015. doi: 10.1007/978-1-4939-0790-8.
    [124] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, volume 167 of Applied Mathematical Sciences, Springer, New York, 2009.
    [125] R. A. SchulzJ. A. Stein and N. J. Pelc, How CT happened: The early development of medical computed tomography, Journal of Medical Imaging, 8 (2021), 052110.  doi: 10.1117/1.JMI.8.5.052110.
    [126] M. SchweigerS. R. ArridgeM. Hiraoka and D. T. Delpy, The finite element method for the propagation of light in scattering media: Boundary and source conditions, Medical Physics, 22 (1995), 1779-1792.  doi: 10.1118/1.597634.
    [127] H. Singh, R. J. Cooper, C. W. Lee, L. Dempsey, A. Edwards, S. Brigadoi, D. Airantzis, N. Everdell, A. Michell, D. Holder, et al., Mapping cortical haemodynamics during neonatal seizures using diffuse optical tomography: A case study, NeuroImage: Clinical, 5 (2014), 256-265. doi: 10.1016/j.nicl.2014.06.012.
    [128] S. SrinivasanB. W. PogueS. JiangH. DehghaniC. KogelS. SohoJ. J. GibsonT. D. TostesonS. P. Poplack and K. D. Paulsen, Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography, Proceedings of the National Academy of Sciences, 100 (2003), 12349-12354.  doi: 10.1073/pnas.2032822100.
    [129] Y. SunZ. Xia and U. S. Kamilov, Efficient and accurate inversion of multiple scattering with deep learning, Optics Express, 26 (2018), 14678-14688.  doi: 10.1364/OE.26.014678.
    [130] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153-169.  doi: 10.2307/1971291.
    [131] J. Tang, Nonconvex and nonsmooth total variation regularization method for diffuse optical tomography based on RTE, Inverse Problems, 37 (2021), 065001, 35 pp. doi: 10.1088/1361-6420/abf5ed.
    [132] J. Tang, B. Han, W. Han, B. Bi and L. Li, Mixed total variation and L1 regularization method for optical tomography based on radiative transfer equation, Computational and Mathematical Methods in Medicine, 2017 (2017), Art. ID 2953560, 15 pp. doi: 10.1155/2017/2953560.
    [133] T. Tarvainen, B. T. Cox, J. P. Kaipio and S. R. Arridge, Reconstructing absorption and scattering distributions in quantitative photoacoustic tomography, Inverse Problems, 28 (2012), 084009, 17 pp. doi: 10.1088/0266-5611/28/8/084009.
    [134] L. TianB. HuntM. A. L. BellJ. YiJ. T. SmithM. OchoaX. Intes and N. J. Durr, Deep learning in biomedical optics, Lasers in Surgery and Medicine, 53 (2021), 748-775.  doi: 10.1002/lsm.23414.
    [135] E. Turajlic, Adaptive SVD domain-based white Gaussian noise level estimation in images, IEEE Access, 6 (2018), 72735-72747.  doi: 10.1109/ACCESS.2018.2882298.
    [136] K. M. S. Uddin, A. Mostofa, M. Anastasio and Q. Zhu, Improved two step reconstruction method in ultrasound guided diffuse optical tomography, in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), page OF1D.5. Optica Publishing Group, 2018. doi: 10.1364/OTS.2018.OF1D.5.
    [137] G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011, 39 pp. doi: 10.1088/0266-5611/25/12/123011.
    [138] J. M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM Journal on Scientific and Statistical Computing, 4 (1983), 164-176.  doi: 10.1137/0904012.
    [139] C. R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems, 12 (1996), 535-547.  doi: 10.1088/0266-5611/12/4/013.
    [140] B. WangY. ZhangD. LiuX. DingM. DanT. PanH. Zhao and F. Gao, Sparsity-regularized approaches to directly reconstructing hemodynamic response in brain functional diffuse optical tomography, Appl. Opt., 58 (2019), 863-870.  doi: 10.1364/AO.58.000863.
    [141] L. Wang and S. L. Jacques, Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media, J. Opt. Soc. Am. A, 10 (1993), 1746-1752.  doi: 10.1364/JOSAA.10.001746.
    [142] L. V. Wang and H.-I. Wu, Biomedical Optics: Principles and Imaging, John Wiley & Sons, 2012.
    [143] J. Xie and J. Zou, An improved model function method for choosing regularization parameters in linear inverse problems, Inverse Problems, 18 (2002), 631-643.  doi: 10.1088/0266-5611/18/3/307.
    [144] H. B. Yedder, B. Cardoen, M. Shokoufi, F. Golnaraghi and G. Hamarneh, Multitask deep learning reconstruction and localization of lesions in limited angle diffuse optical tomography, IEEE Transactions on Medical Imaging, 2021.
    [145] W. YinS. OsherD. Goldfarb and J. Darbon, Bregman iterative algorithms for $\ell_1$-minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1 (2008), 143-168.  doi: 10.1137/070703983.
    [146] J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, S.-I. Lee, E. Y. Chae, H. H. Kim, Y. M. Bae, et al., Deep learning diffuse optical tomography, IEEE Transactions on Medical Imaging, 39 (2020), 877-887. doi: 10.1109/TMI.2019.2936522.
    [147] L. ZanniA. BenfenatiM. Bertero and V. Ruggiero, Numerical methods for parameter estimation in Poisson data inversion, Journal of Mathematical Imaging and Vision, 52 (2015), 397-413.  doi: 10.1007/s10851-014-0553-9.
    [148] Y. ZhaoM. A. MastandunoS. JiangF. El-GhusseinJ. GuiB. W. Pogue and K. D. Paulsen, Optimization of image reconstruction for magnetic resonance imaging-guided near-infrared diffuse optical spectroscopy in breast, Journal of Biomedical Optics, 20 (2015), 056009.  doi: 10.1117/1.JBO.20.5.056009.
    [149] Y. ZhaoA. RaghuramH. K. KimA. H. HielscherJ. T. Robinson and A. Veeraraghavan, High resolution, deep imaging using confocal time-of-flight diffuse optical tomography, IEEE Transactions on Pattern Analysis and Machine Intelligence, 43 (2021), 2206-2219.  doi: 10.1109/TPAMI.2021.3075366.
    [150] P. Zimmermann, Inverse problem for a nonlocal diffuse optical tomography equation, Inverse Problems, 39 (2023), 094001, 25 pp.
    [151] H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67 (2005), 301-320.  doi: 10.1111/j.1467-9868.2005.00503.x.
    [152] Y. ZouY. ZengS. Li and Q. Zhu, Machine learning model with physical constraints for diffuse optical tomography, Biomedical Optics Express, 12 (2021), 5720-5735.  doi: 10.1364/BOE.432786.
  • 加载中

Figures(9)

Tables(2)

SHARE

Article Metrics

HTML views(2002) PDF downloads(224) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return