In this paper we study a non–local Cahn–Hilliard equation with singular single–well potential and degenerate mobility. This results as a particular case of a more general model derived for a binary, saturated, closed and incompressible mixture, composed by a tumor phase and a healthy phase, evolving in a bounded domain. The general system couples a Darcy-type evolution for the average velocity field with a convective reaction–diffusion type evolution for the nutrient concentration and a non–local convective Cahn–Hilliard equation for the tumor phase. The main mathematical difficulties are related to the proof of the separation property for the tumor phase in the Cahn-Hilliard equation: up to our knowledge, such problem is indeed open in the literature. For this reason, in the present contribution we restrict the analytical study to the Cahn–Hilliard equation only. For the non–local Cahn–Hilliard equation with singular single–well potential and degenerate mobility, we study the existence and uniqueness of weak solutions for spatial dimensions $ d\leq 3 $. After showing existence, we prove the strict separation property in three spatial dimensions, implying the same property also for lower spatial dimensions, which opens the way to the proof of uniqueness of solutions. Finally, we propose a well posed and gradient stable continuous finite element approximation of the model for $ d\leq 3 $, which preserves the physical properties of the continuous solution and which is computationally efficient, and we show simulation results in two spatial dimensions which prove the consistency of the proposed scheme and which describe the phase ordering dynamics associated to the system.
Citation: |
Figure 4. Plot of $ \phi_h^n $ at different time points at late times for the non-local models with $ \alpha = 1 $ (left column) and $ \alpha = 2 $ (right column), in the case $ \phi_0 = 0.05\pm 0.025\iota $, together with plots over vertical lines of $ \phi_h^n $. The vertical lines are indicated as dotted lines in the two dimensional plots
Figure 6. Plot of $ \phi_h^n $ at different time points at late times for the non-local models with $ \alpha = 1 $ (left column) and $ \alpha = 2 $ (right column), in the case $ \phi_0 = 0.3\pm 0.15\iota $, together with plots over vertical lines of $ \phi_h^n $. The vertical lines are indicated as dotted lines in the two dimensional plots
Figure 8. Plot of $ \phi_h^n $ at different time points at late times for the non-local models with $ \alpha = 1 $ (left column) and $ \alpha = 2 $ (right column), in the case $ \phi_0 = 0.36\pm 0.072\iota $, together with plots over vertical lines of $ \phi_h^n $. The vertical lines are indicated as dotted lines in the two dimensional plots
[1] | V. Acary and B. Brogliato, Numerical Methods for Nonsmooth Dynamical Systems, Springer Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-75392-6. |
[2] | A. Agosti, P. F. Antonietti, P. Ciarletta, M. Grasselli and M. Verani, A Cahn-Hilliard–type equation with application to tumor growth dynamics, Math. Methods Appl. Sci., 40 (2017), 7598-7626. doi: 10.1002/mma.4548. |
[3] | A. Agosti, C. Cattaneo, C. Giverso, D. Ambrosi and P. Ciarletta, A computational framework for the personalized clinical treatment of glioblastoma multiforme, ZAMM, 98 (2018), 2307-2327. doi: 10.1002/zamm.201700294. |
[4] | N. J. Armstrong, K. J. Painter and J. A. Sherratt, A continuum approach to modelling cell-cell adhesion, J. Theor. Biol., 243 (2006), 98-113. doi: 10.1016/j.jtbi.2006.05.030. |
[5] | J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999), 286-318. doi: 10.1137/S0036142997331669. |
[6] | A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys., 43 (1994), 357-459. doi: 10.1080/00018739400101505. |
[7] | H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures, Math. Med. Biol., 20 (2003), 341-366. doi: 10.1093/imammb/20.4.341. |
[8] | C. Chatelain, T. Balois, P. Ciarletta and M. Ben Amar, Emergence of microstructural patterns in skin cancer: A phase separation analysis in a binary mixture, New J. Phys., 13 (2011), 115013. doi: 10.1088/1367-2630/13/11/115013. |
[9] | J. Cahn and J. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. doi: 10.1063/1.1744102. |
[10] | P. Carman, Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15 (1937), 150166. |
[11] | C. Chatelain, T. Balois, P. Ciarletta and M. Ben Amar, Emergence of microstructural patterns in skin cancer: A phase separation analysis in a binary mixture, New J. Phys., 13 (2011), 115013. doi: 10.1088/1367-2630/13/11/115013. |
[12] | P. Colli, P. Krejčí, E. Rocca and J. Sprekels, Nonlinear evolution inclusions arising from phase change models, Czechoslovak Math. J., 57 (2007), 1067-1098. doi: 10.1007/s10587-007-0114-0. |
[13] | M. Doi, Soft Matter Physics, Oxford University Press, 2013. doi: 10.1093/acprof:oso/9780199652952.001.0001. |
[14] | I. Ekeland and R. Témam, Convex Analysis and Variational Problems, SIAM, 1999. doi: 10.1137/1.9781611971088. |
[15] | C. M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662. |
[16] | S. Frigeri, On a nonlocal Cahn-Hilliard/Navier-Stokes system with degenerate mobility and singular potential for incompressible fluids with different densities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 647-687. doi: 10.1016/j.anihpc.2020.08.005. |
[17] | S. Frigeri, C. G. Gal and M. Grasselli, Regularity results for the nonlocal Cahn–Hilliard equation with singular potential and degenerate mobility, J. Differ. Equ., 287 (2021), 295-328. doi: 10.1016/j.jde.2021.03.052. |
[18] | S. Frigeri, M. Grasselli and E. Rocca, A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility, Nonlinearity, 28 (2015), 1257-1293. doi: 10.1088/0951-7715/28/5/1257. |
[19] | H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31. doi: 10.1016/S0022-247X(02)00425-0. |
[20] | C. G. Gal, A. Giorgini and M. Grasselli, The separation property for 2D Cahn-Hilliard equations: Local, nonlocal and fractional energy cases, Discrete Contin. Dyn. Syst., 43 (2023), 2270-2304. doi: 10.3934/dcds.2023010. |
[21] | C. G. Gal, A. Giorgini and M. Grasselli, The nonlocal Cahn-Hilliard equation with singular potential: Well-posedness, regularity and strict separation property, J. Differential Equations, 263 (2017), 5253-5297. doi: 10.1016/j.jde.2017.06.015. |
[22] | H. Garcke, K. F. Lam, E. Sitka and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), 1095-1148. doi: 10.1142/S0218202516500263. |
[23] | G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions. Ⅰ. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61. doi: 10.1007/BF02181479. |
[24] | A. Giorgini, On the separation property and the global attractor for the nonlocal Cahn-Hilliard equation in three dimensions, 2023. |
[25] | Z. Guan, C. Wang and S. W. Wise, A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation, Numer. Math., 128 (2014), 377-406. doi: 10.1007/s00211-014-0608-2. |
[26] | M. E. Gurtin, Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5. |
[27] | F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265. doi: 10.1515/jnum-2012-0013. |
[28] | T. Hillen, H. Enderling and P. Hahnfeldt, The tumor growth paradox and immune system-mediated selection for cancer stem cells, Bull. Math. Biol., 75 (2013), 161-184. doi: 10.1007/s11538-012-9798-x. |
[29] | M. H. Holmes and V. C. Mow, The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration, J. Biomech., 23 (1990), 1145-1156. doi: 10.1016/0021-9290(90)90007-P. |
[30] | J. Kozeny, Über kapillare leitung des wassers im boden, Sitzungsber Akad Wiss Wien, 136 (1927), 271306. |
[31] | P. Krejčí and E. Rocca, Well-posedness of an extended model for water-ice phase transitions, Discrete Contin. Dyn. Syst. - S, 6 (2013), 439-460. doi: 10.3934/dcdss.2013.6.439. |
[32] | Ph. Laurencot, Solutions to a Penrose–Fife model of phase–field type, J. Math. Anal. Appl., 185 (1994), 262-274. doi: 10.1006/jmaa.1994.1247. |
[33] | A. Miranville, The Cahn–Hilliard Equation: Recent Advances and Applications, Society for Industrial and Applied Mathematics, 2019. doi: 10.1137/1.9781611975925. |
[34] | L. Onsager, Reciprocal relations in irreversible processes. Ⅰ, Phys. Rev., 37 (1931), 405. doi: 10.1103/PhysRev.37.405. |
[35] | A. Poiatti, The 3D strict separation property for the nonlocal Cahn–Hilliard equation with singular potential, Preprint: https://arXiv.org/abs/2303.07745. |
[36] | A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Berlin, Heidelberg, 2009. |
[37] | H. Wang, T. Qian and X. Xu, Onsager's variational principle in active soft matter, Soft Matter, 17 (2021), 3634-3653. doi: 10.1039/D0SM02076A. |
Plot of the single well potential (2) corresponding to the value
Plots of the Lyapunov functionals
Plot of
Plot of
Plot of
Plot of
Plot of
Plot of
Plot of the quantity