\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Stock patterns in a class of delayed discrete-time population models

  • *Corresponding author: Bapan Ghosh

    *Corresponding author: Bapan Ghosh

The first author is supported by University Grants Commission (UGC) under the grant 16-9(June2018)/2019(NET/CSIR)

Abstract / Introduction Full Text(HTML) Figure(7) / Table(3) Related Papers Cited by
  • This paper highlights the behavior presented by a new class of discrete-time predator-prey models which have a time delay in the predation process. These models are formulated by discretizing continuous-time delayed Rosenzweig-MacArthur predator-prey systems. The stability analysis is performed through Routh-Hurwitz (RH) criteria, and bifurcation diagrams help to grasp the change in the dynamics of interacting species. First, we examine the impact of changing carrying capacity on (i) the stability of the equilibrium and (ii) the mean population level in delayed systems. When the delay is very large, the stability thresholds of the carrying capacity of different delayed models tend to converge. We compute the mean population size as a function of carrying capacity. Mean prey (resp. predator) stock increases (resp. decreases) with increasing carrying capacity of prey resulting in the paradox of enrichment in our discrete-time systems. For higher delayed models, the value of the mean prey (resp. predator) stock is higher (lower). Second, harvesting has a potential to stabilize an unstable mode of the coexisting equilibrium. When prey is harvested, the mean population of prey (resp. predator) decreases (increases). Therefore, no hydra effect is experienced by prey species. On the other hand, predator harvesting potentially increases its own mean stock, leading to hydra effects in predators. Most importantly, we have computed the mean stock with respect to harvesting. For both prey and predator harvesting, the mean prey size increases with an increase in delay, whereas the mean predator size decreases with an increase in delay. For the system with larger delay, the hydra effects on predators become more prominent in the sense that the rate of increase of mean predator stock is higher.

    Mathematics Subject Classification: Primary: 39A28, 39A33, 65Q10, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Bifurcation diagram with predator population. The bifurcation diagrams of the delayed models with delay $ 0 $, $ 1 $, $ 2 $, $ 3 $, and $ 4 $ units are shown in subplots (b), (c), (d), (e), and (f), respectively. We fixed $ r = 0.4 $

    Figure 2.  Phase portrait for (a) K = 5 and (b) K = 6.7. The parameters are the same for the models with delay $ 0 $, $ 1 $, $ 2 $, $ 3 $, and $ 4 $ unit as mentioned in Figure 1. The third subplot (c) represents the phase portrait for five different values of $ K $ for the $ 3 $-unit delayed model

    Figure 3.  Mean population for (a) prey and (b) predator corresponding to different delayed models given in Fig. 1, for each value of $ K $. Here, '$ * $' (black colored) represents the equilibrium state. The initial condition used here is $ (x_0, y_0) = (2.1, 1) $, $ u_{i, 0} = x_0 $, and $ v_{i, 0} = y_0 $, where $ i $ depends on the delay value. For any parameter set, we have estimated the mean value by considering $ 300, 000 $ iterations to achieve convergence. The same practice is also followed for the remaining situations

    Figure 4.  Bifurcation diagram as a function of $ e_1 $ corresponding to $ 0 $, $ 1 $, $ 2 $, $ 3 $, and $ 4 $ unit delays. The maximum and minimum predator population sizes are plotted when effort is varied

    Figure 5.  Mean population for (a) prey and (b) predator corresponding to different delayed models under prey harvesting. Here, '$ * $' (black colored) represents the equilibrium state. The initial condition used here is $ (x_0, y_0) = (2.1, 1) $, $ u_{i, 0} = x_0 $, and $ v_{i, 0} = y_0 $, where $ i $ depends on the delay value

    Figure 6.  Bifurcation diagram as a function of $ e_2 $ corresponding to different delayed systems. The bifurcation diagram is plotted by accounting for the maximum and minimum predator sizes in the long run when effort is increased. The initial condition is set as the same for prey harvesting

    Figure 7.  Mean population for (a) prey and (b) predator corresponding to different delayed models for each value of $ e_2 $. Here, '$ * $' (black colored) represents the equilibrium state

    Table 1.  Computation of threshold value $ K $ corresponding to different delays. We have fixed parameters of the unharvested model as $ \alpha = 3/5 $, $ \beta = 3/10 $, $ h = 1 $, and $ m = 1/5 $

    $\mathit{\boldsymbol{ \tau }}$ Threshold $\mathit{\boldsymbol{ K }}$
    $ \mathit{\boldsymbol{r=0.1 }}$ $ \mathit{\boldsymbol{r=0.2 }}$ $ \mathit{\boldsymbol{r=0.3 }}$ $ \mathit{\boldsymbol{r=0.4 }}$ $ \mathit{\boldsymbol{r=0.5 }}$
    $ 0 $ $ 4.72727 $ $ 4.72727 $ $ 4.72727 $ $ 4.72727 $ $ 4.72727 $
    $ 1 $ $ 4.60275 $ $ 4.60309 $ $ 4.60343 $ $ 4.60377 $ $ 4.60411 $
    $ 2 $ $ 4.53515 $ $ 4.53580 $ $ 4.53646 $ $ 4.53711 $ $ 4.53775 $
    $ 3 $ $ 4.49440 $ $ 4.49529 $ $ 4.49617 $ $ 4.49704 $ $ 4.49790 $
    $ 4 $ $ 4.46806 $ $ 4.46910 $ $ 4.47013 $ $ 4.47115 $ $ 4.47215 $
     | Show Table
    DownLoad: CSV

    Table 2.  Stability thresholds $e_1$ of the models when delay is $0$, $1$, $2$, $3$, and $4$ units. In the absence of predator harvesting (i.e., $q_2 = 0$), we select the ecological parameters of the models as $r = 0.4$, $K = 6$, $\alpha = 6/10$, $\beta = 3/10$, $h = 1$, and $m = 0.2$. The technological parameter $q_1 = 1$ is chosen for simulation

    $\tau$ 0 1 2 3 4
    Threshold $e_1$ $0.08484$ $0.09310$ $0.09756$ $0.10025$ $0.10199$
     | Show Table
    DownLoad: CSV

    Table 3.  Stability threshold $ e_2 $ corresponding to different time delays. The fixed ecological parameters of the model are $ r = 0.4 $, $ K = 6 $, $ \alpha = 6/10 $, $ \beta = 3/10 $, $ h = 1 $, and $ m = 0.2 $, along with the technological parameter $ q_2 = 1. $

    $ \tau $ 0 1 2 3 4
    Threshold $ e_2 $ $ 0.01755 $ $ 0.01890 $ $ 0.01959 $ $ 0.01998 $ $ 0.02023 $
     | Show Table
    DownLoad: CSV
  • [1] D. AbramsA. Rutland and L. Cameron, The development of subjective group dynamics: Children's judgments of normative and deviant in-group and out-group individuals, Child Development, 74 (2003), 1840-1856.  doi: 10.1046/j.1467-8624.2003.00641.x.
    [2] P. A. Abrams and H. Matsuda, Consequences of behavioral dynamics for the population dynamics of predator-prey systems with switching, Population Ecology, 46 (2004), 13-25.  doi: 10.1007/s10144-003-0168-2.
    [3] P. A. Abrams and H. Matsuda, The effect of adaptive change in the prey on the dynamics of an exploited predator population, Canadian Journal of Fisheries and Aquatic Sciences, 62 (2005), 758-766.  doi: 10.1139/f05-051.
    [4] Ö. Ak Gümüs, Bifurcation analysis and chaos control of a discrete-time prey-predator model with Allee effect, Hacettepe Journal of Mathematics and Statistics, 52 (2023), 1029-1045. 
    [5] I. Akjouj, M. Barbier, M. Clenet, W. Hachem, M. Maida, F. Massol, J. Najim and V. C. Tran, Complex systems in ecology: A guided tour with large Lotka-Volterra models and random matrices, Proceedings of the Royal Society A, 480 (2024), Paper No. 20230284, 35 pp. doi: 10.1098/rspa.2023.0284.
    [6] B. Barman and B. Ghosh, Explicit impacts of harvesting in delayed predator-prey models, Chaos, Solitons & Fractals, 122 (2019), 213-228.  doi: 10.1016/j.chaos.2019.03.002.
    [7] M. H. Cortez and P. A. Abrams, Hydra effects in stable communities and their implications for system dynamics, Ecology, 97 (2016), 1135-1145.  doi: 10.1890/15-0648.1.
    [8] Q. CuiQ. ZhangZ. Qiu and Z. Hu, Complex dynamics of a discrete-time predator-prey system with Holling IV functional response, Chaos, Solitons & Fractals, 87 (2016), 158-171.  doi: 10.1016/j.chaos.2016.04.002.
    [9] Z. Eskandari, J. Alidousti and Z. Avazzadeh, Rich dynamics of discrete time-delayed Moran-Ricker model, Qualitative Theory of Dynamical Systems, 22 (2023), Paper No. 98, 18 pp. doi: 10.1007/s12346-023-00774-3.
    [10] Z. EskandariP. A. Naik and M. Yavuz, Dynamical behaviors of a discrete-time prey-predator model with harvesting effect on the predator, Journal of Applied Analysis & Computation, 14 (2024), 283-297.  doi: 10.11948/20230212.
    [11] B. GhoshT. Kar and T. Legovic, Relationship between exploitation, oscillation, MSY and extinction, Mathematical Biosciences, 256 (2014), 1-9.  doi: 10.1016/j.mbs.2014.07.005.
    [12] B. Ghosh, S. Sarda and S. Sahu, Torus doubling route to chaos and chaos eradication in delayed discrete-time predator-prey models, Mathematical Models in the Applied Sciences, 2022. doi: 10.1002/mma.8789.
    [13] K. P. Hadeler and I. Gerstmann, The discrete Rosenzweig model, Mathematical Biosciences, 98 (1990), 49-72.  doi: 10.1016/0025-5564(90)90011-M.
    [14] R. HuangY. Wang and H. Wu, Population abundance in predator-prey systems with predator's dispersal between two patches, Theoretical Population Biology, 135 (2020), 1-8. 
    [15] J. M. Jaramillo, J. Ma, P. van den Driessche and A.-A. Yakubu, Disease-induced hydra effect with overcompensatory recruitment, Bulletin of Mathematical Biology, 84 (2022), Paper No. 17, 15 pp. doi: 10.1007/s11538-021-00975-4.
    [16] X. Jiang, X. Chen, M. Chi and J. Chen, On Hopf bifurcation and control for a delay systems, Applied Mathematics and Computation, 370 (2020), 124906, 10 pp. doi: 10.1016/j.amc.2019.124906.
    [17] K. D. Kantarakias, K. Shawki and G. Papadakis, Uncertainty quantification of sensitivities of time-average quantities in chaotic systems, Physical Review E, 101 (2020), 022223, 10 pp. doi: 10.1103/physreve.101.022223.
    [18] A. Khan, A. Maqbool and T. D. Alharbi, Bifurcations and chaos control in a discrete Rosenzweig-Macarthur prey-predator model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34 (2024), Paper No. 033111, 17 pp. doi: 10.1063/5.0165828.
    [19] M. Kot, Torus bubbling in a discrete-time predator-prey model, Journal of Difference Equations and Applications, 11 (2005), 431-441.  doi: 10.1080/10236190412331335481.
    [20] T. Legović and S. Geček, Impact of maximum sustainable yield on independent populations, Ecological Modelling, 221 (2010), 2108-2111. 
    [21] B. LiZ. Yuan and Z. Eskandari, Dynamics and bifurcations of a discrete-time Moran-Ricker model with a time delay, Mathematics, 11 (2023), 2446.  doi: 10.3390/math11112446.
    [22] X. LinY. YangY. Xu and M. He, Bifurcations and hydra effects in Rosenzweig-MacArthur model, Journal of Applied Analysis & Computation, 14 (2024), 606-622.  doi: 10.11948/20220241.
    [23] C. LiuL. Wang and Q. Zhang, Complex dynamics and stability analysis in a discrete hybrid bioeconomic system with double time delays, Journal of the Franklin Institute, 354 (2017), 4519-4548.  doi: 10.1016/j.jfranklin.2017.05.015.
    [24] E. Liz and A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, Journal of Mathematical Biology, 65 (2012), 997-1016.  doi: 10.1007/s00285-011-0489-2.
    [25] A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267.  doi: 10.1007/s002850100095.
    [26] R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.  doi: 10.1126/science.186.4164.645.
    [27] R. M. May, Biological populations obeying difference equations: Stable points, stable cycles, and chaos, Journal of Theoretical Biology, 51 (1975), 511-524.  doi: 10.1016/0022-5193(75)90078-8.
    [28] A. Mougi and Y. Iwasa, Evolution towards oscillation or stability in a predator-prey system, Proceedings of the Royal Society B: Biological Sciences, 277 (2010), 3163-3171.  doi: 10.1098/rspb.2010.0691.
    [29] J. D. Murray, Mathematical Biology I: An Introduction, Springer, 2002.
    [30] P. A. Naik, Z. Eskandari, M. Yavuz and Z. Huang, Bifurcation results and chaos in a two-dimensional predator-prey model incorporating Holling-type response function on the predator, Discrete and Continuous Dynamical Systems-S, (2024). doi: 10.3934/dcdss.2024045.
    [31] P. A. Naik, Z. Eskandari, M. Yavuz and J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, Journal of Computational and Applied Mathematics, 413 (2022), Paper No. 114401, 12 pp. doi: 10.1016/j.cam.2022.114401.
    [32] G. P. Neverova, O. L. Zhdanova and E. Y. Frisman, Evolutionary dynamics of structured populations with density-dependent limitation of juvenile survival, Communications in Nonlinear Science and Numerical Simulation, 109 (2022), Paper No. 106272, 20 pp. doi: 10.1016/j.cnsns.2022.106272.
    [33] H. S. Panigoro, E. Rahmi, N. Achmad, S. L. Mahmud, R. Resmawan and A. R. Nuha, A discrete-time fractional-order Rosenzweig-Macarthur predator-prey model involving prey refuge, Commun. Math. Biol. Neurosci., (2021).
    [34] H. S. PanigoroM. Rayungsari and A. Suryanto, Bifurcation and chaos in a discrete-time fractional-order logistic model with Allee effect and proportional harvesting, International Journal of Dynamics and Control, 11 (2023), 1544-1558.  doi: 10.1007/s40435-022-01101-5.
    [35] Rajni and B. Ghosh, Multistability, chaos and mean population density in a discrete-time predator-prey system, Chaos, Solitons & Fractals, 162 (2022), Paper No. 112497, 16 pp. doi: 10.1016/j.chaos.2022.112497.
    [36] P. C. Rech, On two discrete-time counterparts of a continuous-time prey-predator model, Brazilian Journal of Physics, 50 (2020), 119-123.  doi: 10.1007/s13538-019-00717-x.
    [37] W. E. Ricker, Stock and recruitment, Journal of the Fisheries Board of Canada, 11 (1954), 559-623.  doi: 10.1139/f54-039.
    [38] P. A. Samuelson, Conditions that the roots of a polynomial be less than unity in absolute value, The Annals of Mathematical Statistics, 12 (1941), 360-364.  doi: 10.1214/aoms/1177731720.
    [39] A. Shapiro, On the problem of loops in return sequences, Upravlenie i Informatsiya (Management and Information), Vladivostok: Dal'nevost. Nauchn. Tsentr Akad. Nauk SSSR, 3 (1972), 96-118. 
    [40] M. Sieber and F. M. Hilker, The hydra effect in predator-prey models, Journal of Mathematical Biology, 64 (2012), 341-360.  doi: 10.1007/s00285-011-0416-6.
    [41] A. Singh and V. S. Sharma, Bifurcations and chaos control in a discrete-time prey-predator model with Holling type-II functional response and prey refuge, Journal of Computational and Applied Mathematics, 418 (2023), Paper No. 114666, 21 pp. doi: 10.1016/j.cam.2022.114666.
    [42] S. Sobirjon, Neimark-Sacker bifurcation and stability analysis in a discrete phytoplankton-zooplankton system with Holling type II functional response, Journal of Applied Analysis & Computation, 13 (2023), 2048-2064.  doi: 10.11948/20220345.
    [43] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, CRC press, 2018.
    [44] Y. Tang and F. Li, Multiple stable states for a class of predator-prey systems with two harvesting rates, Journal of Applied Analysis & Computation, 14 (2024), 506-514.  doi: 10.11948/20230295.
    [45] S. Toaha, Stability analysis of Wangersky-Cunningham model with constant effort of harvesting, Jurnal Matematika, Statistika dan Komputasi, 12 (2016), 140-152. 
    [46] E. Tromeur and N. Loeuille, Balancing yield with resilience and conservation objectives in harvested predator-prey communities, Oikos, 126 (2017), 1780-1789.  doi: 10.1111/oik.03985.
    [47] S. Vinoth, R. Sivasamy, K. Sathiyanathan, G. Rajchakit, P. Hammachukiattiku, R. Vadivel and N. Gunasekaran, Dynamical analysis of a delayed food chain model with additive Allee effect, Advances in Difference Equations, (2021), Paper No. 54, 20 pp. doi: 10.1186/s13662-021-03216-z.
    [48] V. WeideM. C. Varriale and F. M. Hilker, Hydra effect and paradox of enrichment in discrete-time predator-prey models, Mathematical Biosciences, 310 (2019), 120-127.  doi: 10.1016/j.mbs.2018.12.010.
    [49] S. WollrabS. Diehl and A. M. De Roos, Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways, Ecology Letters, 15 (2012), 935-946.  doi: 10.1111/j.1461-0248.2012.01823.x.
    [50] A. M. Yousef, S. M. Salman and A. A. Elsadany, Stability and bifurcation analysis of a delayed discrete predator-prey model, International Journal of Bifurcation and Chaos, 28 (2018), 1850116, 26 pp. doi: 10.1142/S021812741850116X.
  • 加载中

Figures(7)

Tables(3)

SHARE

Article Metrics

HTML views(590) PDF downloads(386) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return