[1]
|
D. Abrams, A. Rutland and L. Cameron, The development of subjective group dynamics: Children's judgments of normative and deviant in-group and out-group individuals, Child Development, 74 (2003), 1840-1856.
doi: 10.1046/j.1467-8624.2003.00641.x.
|
[2]
|
P. A. Abrams and H. Matsuda, Consequences of behavioral dynamics for the population dynamics of predator-prey systems with switching, Population Ecology, 46 (2004), 13-25.
doi: 10.1007/s10144-003-0168-2.
|
[3]
|
P. A. Abrams and H. Matsuda, The effect of adaptive change in the prey on the dynamics of an exploited predator population, Canadian Journal of Fisheries and Aquatic Sciences, 62 (2005), 758-766.
doi: 10.1139/f05-051.
|
[4]
|
Ö. Ak Gümüs, Bifurcation analysis and chaos control of a discrete-time prey-predator model with Allee effect, Hacettepe Journal of Mathematics and Statistics, 52 (2023), 1029-1045.
|
[5]
|
I. Akjouj, M. Barbier, M. Clenet, W. Hachem, M. Maida, F. Massol, J. Najim and V. C. Tran, Complex systems in ecology: A guided tour with large Lotka-Volterra models and random matrices, Proceedings of the Royal Society A, 480 (2024), Paper No. 20230284, 35 pp.
doi: 10.1098/rspa.2023.0284.
|
[6]
|
B. Barman and B. Ghosh, Explicit impacts of harvesting in delayed predator-prey models, Chaos, Solitons & Fractals, 122 (2019), 213-228.
doi: 10.1016/j.chaos.2019.03.002.
|
[7]
|
M. H. Cortez and P. A. Abrams, Hydra effects in stable communities and their implications for system dynamics, Ecology, 97 (2016), 1135-1145.
doi: 10.1890/15-0648.1.
|
[8]
|
Q. Cui, Q. Zhang, Z. Qiu and Z. Hu, Complex dynamics of a discrete-time predator-prey system with Holling IV functional response, Chaos, Solitons & Fractals, 87 (2016), 158-171.
doi: 10.1016/j.chaos.2016.04.002.
|
[9]
|
Z. Eskandari, J. Alidousti and Z. Avazzadeh, Rich dynamics of discrete time-delayed Moran-Ricker model, Qualitative Theory of Dynamical Systems, 22 (2023), Paper No. 98, 18 pp.
doi: 10.1007/s12346-023-00774-3.
|
[10]
|
Z. Eskandari, P. A. Naik and M. Yavuz, Dynamical behaviors of a discrete-time prey-predator model with harvesting effect on the predator, Journal of Applied Analysis & Computation, 14 (2024), 283-297.
doi: 10.11948/20230212.
|
[11]
|
B. Ghosh, T. Kar and T. Legovic, Relationship between exploitation, oscillation, MSY and extinction, Mathematical Biosciences, 256 (2014), 1-9.
doi: 10.1016/j.mbs.2014.07.005.
|
[12]
|
B. Ghosh, S. Sarda and S. Sahu, Torus doubling route to chaos and chaos eradication in delayed discrete-time predator-prey models, Mathematical Models in the Applied Sciences, 2022.
doi: 10.1002/mma.8789.
|
[13]
|
K. P. Hadeler and I. Gerstmann, The discrete Rosenzweig model, Mathematical Biosciences, 98 (1990), 49-72.
doi: 10.1016/0025-5564(90)90011-M.
|
[14]
|
R. Huang, Y. Wang and H. Wu, Population abundance in predator-prey systems with predator's dispersal between two patches, Theoretical Population Biology, 135 (2020), 1-8.
|
[15]
|
J. M. Jaramillo, J. Ma, P. van den Driessche and A.-A. Yakubu, Disease-induced hydra effect with overcompensatory recruitment, Bulletin of Mathematical Biology, 84 (2022), Paper No. 17, 15 pp.
doi: 10.1007/s11538-021-00975-4.
|
[16]
|
X. Jiang, X. Chen, M. Chi and J. Chen, On Hopf bifurcation and control for a delay systems, Applied Mathematics and Computation, 370 (2020), 124906, 10 pp.
doi: 10.1016/j.amc.2019.124906.
|
[17]
|
K. D. Kantarakias, K. Shawki and G. Papadakis, Uncertainty quantification of sensitivities of time-average quantities in chaotic systems, Physical Review E, 101 (2020), 022223, 10 pp.
doi: 10.1103/physreve.101.022223.
|
[18]
|
A. Khan, A. Maqbool and T. D. Alharbi, Bifurcations and chaos control in a discrete Rosenzweig-Macarthur prey-predator model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34 (2024), Paper No. 033111, 17 pp.
doi: 10.1063/5.0165828.
|
[19]
|
M. Kot, Torus bubbling in a discrete-time predator-prey model, Journal of Difference Equations and Applications, 11 (2005), 431-441.
doi: 10.1080/10236190412331335481.
|
[20]
|
T. Legović and S. Geček, Impact of maximum sustainable yield on independent populations, Ecological Modelling, 221 (2010), 2108-2111.
|
[21]
|
B. Li, Z. Yuan and Z. Eskandari, Dynamics and bifurcations of a discrete-time Moran-Ricker model with a time delay, Mathematics, 11 (2023), 2446.
doi: 10.3390/math11112446.
|
[22]
|
X. Lin, Y. Yang, Y. Xu and M. He, Bifurcations and hydra effects in Rosenzweig-MacArthur model, Journal of Applied Analysis & Computation, 14 (2024), 606-622.
doi: 10.11948/20220241.
|
[23]
|
C. Liu, L. Wang and Q. Zhang, Complex dynamics and stability analysis in a discrete hybrid bioeconomic system with double time delays, Journal of the Franklin Institute, 354 (2017), 4519-4548.
doi: 10.1016/j.jfranklin.2017.05.015.
|
[24]
|
E. Liz and A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, Journal of Mathematical Biology, 65 (2012), 997-1016.
doi: 10.1007/s00285-011-0489-2.
|
[25]
|
A. Martin and S. Ruan, Predator-prey models with delay and prey harvesting, Journal of Mathematical Biology, 43 (2001), 247-267.
doi: 10.1007/s002850100095.
|
[26]
|
R. M. May, Biological populations with nonoverlapping generations: Stable points, stable cycles, and chaos, Science, 186 (1974), 645-647.
doi: 10.1126/science.186.4164.645.
|
[27]
|
R. M. May, Biological populations obeying difference equations: Stable points, stable cycles, and chaos, Journal of Theoretical Biology, 51 (1975), 511-524.
doi: 10.1016/0022-5193(75)90078-8.
|
[28]
|
A. Mougi and Y. Iwasa, Evolution towards oscillation or stability in a predator-prey system, Proceedings of the Royal Society B: Biological Sciences, 277 (2010), 3163-3171.
doi: 10.1098/rspb.2010.0691.
|
[29]
|
J. D. Murray, Mathematical Biology I: An Introduction, Springer, 2002.
|
[30]
|
P. A. Naik, Z. Eskandari, M. Yavuz and Z. Huang, Bifurcation results and chaos in a two-dimensional predator-prey model incorporating Holling-type response function on the predator, Discrete and Continuous Dynamical Systems-S, (2024).
doi: 10.3934/dcdss.2024045.
|
[31]
|
P. A. Naik, Z. Eskandari, M. Yavuz and J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, Journal of Computational and Applied Mathematics, 413 (2022), Paper No. 114401, 12 pp.
doi: 10.1016/j.cam.2022.114401.
|
[32]
|
G. P. Neverova, O. L. Zhdanova and E. Y. Frisman, Evolutionary dynamics of structured populations with density-dependent limitation of juvenile survival, Communications in Nonlinear Science and Numerical Simulation, 109 (2022), Paper No. 106272, 20 pp.
doi: 10.1016/j.cnsns.2022.106272.
|
[33]
|
H. S. Panigoro, E. Rahmi, N. Achmad, S. L. Mahmud, R. Resmawan and A. R. Nuha, A discrete-time fractional-order Rosenzweig-Macarthur predator-prey model involving prey refuge, Commun. Math. Biol. Neurosci., (2021).
|
[34]
|
H. S. Panigoro, M. Rayungsari and A. Suryanto, Bifurcation and chaos in a discrete-time fractional-order logistic model with Allee effect and proportional harvesting, International Journal of Dynamics and Control, 11 (2023), 1544-1558.
doi: 10.1007/s40435-022-01101-5.
|
[35]
|
Rajni and B. Ghosh, Multistability, chaos and mean population density in a discrete-time predator-prey system, Chaos, Solitons & Fractals, 162 (2022), Paper No. 112497, 16 pp.
doi: 10.1016/j.chaos.2022.112497.
|
[36]
|
P. C. Rech, On two discrete-time counterparts of a continuous-time prey-predator model, Brazilian Journal of Physics, 50 (2020), 119-123.
doi: 10.1007/s13538-019-00717-x.
|
[37]
|
W. E. Ricker, Stock and recruitment, Journal of the Fisheries Board of Canada, 11 (1954), 559-623.
doi: 10.1139/f54-039.
|
[38]
|
P. A. Samuelson, Conditions that the roots of a polynomial be less than unity in absolute value, The Annals of Mathematical Statistics, 12 (1941), 360-364.
doi: 10.1214/aoms/1177731720.
|
[39]
|
A. Shapiro, On the problem of loops in return sequences, Upravlenie i Informatsiya (Management and Information), Vladivostok: Dal'nevost. Nauchn. Tsentr Akad. Nauk SSSR, 3 (1972), 96-118.
|
[40]
|
M. Sieber and F. M. Hilker, The hydra effect in predator-prey models, Journal of Mathematical Biology, 64 (2012), 341-360.
doi: 10.1007/s00285-011-0416-6.
|
[41]
|
A. Singh and V. S. Sharma, Bifurcations and chaos control in a discrete-time prey-predator model with Holling type-II functional response and prey refuge, Journal of Computational and Applied Mathematics, 418 (2023), Paper No. 114666, 21 pp.
doi: 10.1016/j.cam.2022.114666.
|
[42]
|
S. Sobirjon, Neimark-Sacker bifurcation and stability analysis in a discrete phytoplankton-zooplankton system with Holling type II functional response, Journal of Applied Analysis & Computation, 13 (2023), 2048-2064.
doi: 10.11948/20220345.
|
[43]
|
S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering, CRC press, 2018.
|
[44]
|
Y. Tang and F. Li, Multiple stable states for a class of predator-prey systems with two harvesting rates, Journal of Applied Analysis & Computation, 14 (2024), 506-514.
doi: 10.11948/20230295.
|
[45]
|
S. Toaha, Stability analysis of Wangersky-Cunningham model with constant effort of harvesting, Jurnal Matematika, Statistika dan Komputasi, 12 (2016), 140-152.
|
[46]
|
E. Tromeur and N. Loeuille, Balancing yield with resilience and conservation objectives in harvested predator-prey communities, Oikos, 126 (2017), 1780-1789.
doi: 10.1111/oik.03985.
|
[47]
|
S. Vinoth, R. Sivasamy, K. Sathiyanathan, G. Rajchakit, P. Hammachukiattiku, R. Vadivel and N. Gunasekaran, Dynamical analysis of a delayed food chain model with additive Allee effect, Advances in Difference Equations, (2021), Paper No. 54, 20 pp.
doi: 10.1186/s13662-021-03216-z.
|
[48]
|
V. Weide, M. C. Varriale and F. M. Hilker, Hydra effect and paradox of enrichment in discrete-time predator-prey models, Mathematical Biosciences, 310 (2019), 120-127.
doi: 10.1016/j.mbs.2018.12.010.
|
[49]
|
S. Wollrab, S. Diehl and A. M. De Roos, Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways, Ecology Letters, 15 (2012), 935-946.
doi: 10.1111/j.1461-0248.2012.01823.x.
|
[50]
|
A. M. Yousef, S. M. Salman and A. A. Elsadany, Stability and bifurcation analysis of a delayed discrete predator-prey model, International Journal of Bifurcation and Chaos, 28 (2018), 1850116, 26 pp.
doi: 10.1142/S021812741850116X.
|