\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents
Early Access

Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Early Access articles via the “Early Access” tab for the selected journal.

Existence and approximation of a solution for a two point nonlinear Dirichlet problem

  • *Corresponding author

    *Corresponding author 

This work was started while the first-named author was visiting CMAFcIO, and he is grateful for the kind hospitality of the host institute

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The existence of at least one positive solution to a second-order nonlinear two-point boundary value problem, is established. Combining difference methods with Brouwer fixed point and Ascolì-Arzelà theorems, we get a solution as the limit of an appropriate sequence of piecewise linear interpolations. Furthermore, a priori bounds on the infinite norm of a solution and its derivatives are pointed out. Some examples are also discussed to illustrate our results.

    Mathematics Subject Classification: Primary: 39A27; Secondary: 34B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, Basel, 2000.
    [2] E. Amoroso, P. Candito and J. Mawhin, Existence of a priori bounded solutions for discrete two-point boundary value problems, J. Math. Anal. Appl., 519 (2023), Paper No. 126807, 18 pp. doi: 10.1016/j.jmaa.2022.126807.
    [3] P. Amster and J. Haddad, A Hartman-Nagumo type condition for a class of contractible domains, Topol. Methods Nonlinear Anal., 41 (2013), 287-304. 
    [4] G. BonannoP. Candito and G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.  doi: 10.1515/ans-2014-0406.
    [5] G. BonannoP. Candito and D. Motreanu, A coincidence point theorem for sequentially continuous mappings, J. Math. Anal. Appl., 435 (2016), 606-615.  doi: 10.1016/j.jmaa.2015.10.039.
    [6] A. CabadaD. O'Regan and R. L. Pouso, Second order problems with functional conditions including Sturm-Liouville and multipoint conditions, Math. Nachr., 281 (2008), 1254-1263.  doi: 10.1002/mana.200510675.
    [7] P. Candito and R. Livrea, An existence result for a Neumann problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 481-488. 
    [8] P. Candito and R. Livrea, Differential and difference equations with applications, Existence Results for Periodic Boundary Value Problems with a Convection Term, Springer Proc. Math. Stat., 333, Springer, Cham, 2020, 593-602
    [9] G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis, Birkhäuser, Basel, 2021. doi: 10.1007/978-3-030-63230-4.
    [10] G. Feltrin and F. Zanolin, Bound sets for a class of $\phi-$Laplacian operators, J. Differential Equations, 297 (2021), 508-535.  doi: 10.1016/j.jde.2021.06.034.
    [11] M. Fukuhara, Quelques recherches sur les équations différentielles du second ordre, Japanese J. Math., 5 (1928), 351-367. 
    [12] R. Gaines, Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations, SIAM J. Numer. Anal., 11 (1974), 411-434.  doi: 10.1137/0711035.
    [13] M. R. GrossinhoF. Minhós and A. I. Santos, A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition, Nonlinear Anal., 70 (2009), 4027-4038.  doi: 10.1016/j.na.2008.08.011.
    [14] P. Hartman, Ordinary Differential Equations, The Society for Industrial and Applied Mathematics, 2$^{nd}$, Philadelphia, 2002. doi: 10.1137/1.9780898719222.
    [15] W. G. Kelley and  A. C. PetersonDifference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991. 
    [16] J. Mahwin, Boundary value problems for nonlinear ordinary differential equations: From successive approximations to topology, in Development of Mathematics 1900-1950, Birkhäuser, Basel, 1994, 443-477.
    [17] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc., 45 (1992), 249-260.  doi: 10.1017/S0004972700030112.
    [18] C. Marcelli and F. Papalini, Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition, Bound. Value Probl., (2017), Paper No. 183, 15 pp. doi: 10.1186/s13661-017-0913-7.
    [19] J. Mawhin, The Bernstein-Nagumo problem and two-point boundary value problems for ordinary differential equations, Qualitative Theory of Differential Equations, I, II Szeged, (1979), 709-740, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.
    [20] J. Mawhin and H. B. Thompson, Nagumo conditions and second-order quasilinear equations with compatible nonlinear functional boundary conditions, Rocky Mountain J. Math., 41 (2011), 573-596.  doi: 10.1216/RMJ-2011-41-2-573.
    [21] I. Rachůnková and C. C. Tisdell, Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions, Nonlinear Anal., 67 (2007), 1236-1245.  doi: 10.1016/j.na.2006.07.010.
    [22] C. C. Tisdell, A discrete approach to continuous second-order boundary value problems via monotone iterative techniques, Int. J. Difference Equ., 12 (2017), 145-160. 
    [23] C. C. Tisdell, Y. Liu and Z. Liu, Existence of solutions to discrete and continuous second-order boundary value problems via Lyapunov functions and a priori bounds, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 42, 11 pp.
  • 加载中
SHARE

Article Metrics

HTML views(814) PDF downloads(490) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return