\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and approximation of a solution for a two point nonlinear Dirichlet problem

  • *Corresponding author

    *Corresponding author 

This work was started while the first-named author was visiting CMAFcIO, and he is grateful for the kind hospitality of the host institute.

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • The existence of at least one positive solution to a second-order nonlinear two-point boundary value problem, is established. Combining difference methods with Brouwer fixed point and Ascolì-Arzelà theorems, we get a solution as the limit of an appropriate sequence of piecewise linear interpolations. Furthermore, a priori bounds on the infinite norm of a solution and its derivatives are pointed out. Some examples are also discussed to illustrate our results.

    Mathematics Subject Classification: Primary: 39A27; Secondary: 34B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, Basel, 2000.
    [2] E. Amoroso, P. Candito and J. Mawhin, Existence of a priori bounded solutions for discrete two-point boundary value problems, J. Math. Anal. Appl., 519 (2023), Paper No. 126807, 18 pp. doi: 10.1016/j.jmaa.2022.126807.
    [3] P. Amster and J. Haddad, A Hartman-Nagumo type condition for a class of contractible domains, Topol. Methods Nonlinear Anal., 41 (2013), 287-304. 
    [4] G. BonannoP. Candito and G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.  doi: 10.1515/ans-2014-0406.
    [5] G. BonannoP. Candito and D. Motreanu, A coincidence point theorem for sequentially continuous mappings, J. Math. Anal. Appl., 435 (2016), 606-615.  doi: 10.1016/j.jmaa.2015.10.039.
    [6] A. CabadaD. O'Regan and R. L. Pouso, Second order problems with functional conditions including Sturm-Liouville and multipoint conditions, Math. Nachr., 281 (2008), 1254-1263.  doi: 10.1002/mana.200510675.
    [7] P. Candito and R. Livrea, An existence result for a Neumann problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 481-488. 
    [8] P. Candito and R. Livrea, Differential and difference equations with applications, Existence Results for Periodic Boundary Value Problems with a Convection Term, Springer Proc. Math. Stat., 333, Springer, Cham, 2020, 593-602
    [9] G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis, Birkhäuser, Basel, 2021. doi: 10.1007/978-3-030-63230-4.
    [10] G. Feltrin and F. Zanolin, Bound sets for a class of $\phi-$Laplacian operators, J. Differential Equations, 297 (2021), 508-535.  doi: 10.1016/j.jde.2021.06.034.
    [11] M. Fukuhara, Quelques recherches sur les équations différentielles du second ordre, Japanese J. Math., 5 (1928), 351-367. 
    [12] R. Gaines, Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations, SIAM J. Numer. Anal., 11 (1974), 411-434.  doi: 10.1137/0711035.
    [13] M. R. GrossinhoF. Minhós and A. I. Santos, A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition, Nonlinear Anal., 70 (2009), 4027-4038.  doi: 10.1016/j.na.2008.08.011.
    [14] P. Hartman, Ordinary Differential Equations, The Society for Industrial and Applied Mathematics, 2$^{nd}$, Philadelphia, 2002. doi: 10.1137/1.9780898719222.
    [15] W. G. Kelley and  A. C. PetersonDifference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991. 
    [16] J. Mahwin, Boundary value problems for nonlinear ordinary differential equations: From successive approximations to topology, in Development of Mathematics 1900-1950, Birkhäuser, Basel, 1994, 443-477.
    [17] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc., 45 (1992), 249-260.  doi: 10.1017/S0004972700030112.
    [18] C. Marcelli and F. Papalini, Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition, Bound. Value Probl., (2017), Paper No. 183, 15 pp. doi: 10.1186/s13661-017-0913-7.
    [19] J. Mawhin, The Bernstein-Nagumo problem and two-point boundary value problems for ordinary differential equations, Qualitative Theory of Differential Equations, I, II Szeged, (1979), 709-740, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.
    [20] J. Mawhin and H. B. Thompson, Nagumo conditions and second-order quasilinear equations with compatible nonlinear functional boundary conditions, Rocky Mountain J. Math., 41 (2011), 573-596.  doi: 10.1216/RMJ-2011-41-2-573.
    [21] I. Rachůnková and C. C. Tisdell, Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions, Nonlinear Anal., 67 (2007), 1236-1245.  doi: 10.1016/j.na.2006.07.010.
    [22] C. C. Tisdell, A discrete approach to continuous second-order boundary value problems via monotone iterative techniques, Int. J. Difference Equ., 12 (2017), 145-160. 
    [23] C. C. Tisdell, Y. Liu and Z. Liu, Existence of solutions to discrete and continuous second-order boundary value problems via Lyapunov functions and a priori bounds, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 42, 11 pp.
  • 加载中
SHARE

Article Metrics

HTML views(1680) PDF downloads(681) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return