The existence of at least one positive solution to a second-order nonlinear two-point boundary value problem, is established. Combining difference methods with Brouwer fixed point and Ascolì-Arzelà theorems, we get a solution as the limit of an appropriate sequence of piecewise linear interpolations. Furthermore, a priori bounds on the infinite norm of a solution and its derivatives are pointed out. Some examples are also discussed to illustrate our results.
Citation: |
[1] |
R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, Basel, 2000.
![]() ![]() |
[2] |
E. Amoroso, P. Candito and J. Mawhin, Existence of a priori bounded solutions for discrete two-point boundary value problems, J. Math. Anal. Appl., 519 (2023), Paper No. 126807, 18 pp.
doi: 10.1016/j.jmaa.2022.126807.![]() ![]() ![]() |
[3] |
P. Amster and J. Haddad, A Hartman-Nagumo type condition for a class of contractible domains, Topol. Methods Nonlinear Anal., 41 (2013), 287-304.
![]() ![]() |
[4] |
G. Bonanno, P. Candito and G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915-939.
doi: 10.1515/ans-2014-0406.![]() ![]() ![]() |
[5] |
G. Bonanno, P. Candito and D. Motreanu, A coincidence point theorem for sequentially continuous mappings, J. Math. Anal. Appl., 435 (2016), 606-615.
doi: 10.1016/j.jmaa.2015.10.039.![]() ![]() ![]() |
[6] |
A. Cabada, D. O'Regan and R. L. Pouso, Second order problems with functional conditions including Sturm-Liouville and multipoint conditions, Math. Nachr., 281 (2008), 1254-1263.
doi: 10.1002/mana.200510675.![]() ![]() ![]() |
[7] |
P. Candito and R. Livrea, An existence result for a Neumann problem, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 22 (2015), 481-488.
![]() ![]() |
[8] |
P. Candito and R. Livrea, Differential and difference equations with applications, Existence Results for Periodic Boundary Value Problems with a Convection Term, Springer Proc. Math. Stat., 333, Springer, Cham, 2020, 593-602
![]() |
[9] |
G. Dinca and J. Mawhin, Brouwer Degree. The Core of Nonlinear Analysis, Birkhäuser, Basel, 2021.
doi: 10.1007/978-3-030-63230-4.![]() ![]() ![]() |
[10] |
G. Feltrin and F. Zanolin, Bound sets for a class of $\phi-$Laplacian operators, J. Differential Equations, 297 (2021), 508-535.
doi: 10.1016/j.jde.2021.06.034.![]() ![]() ![]() |
[11] |
M. Fukuhara, Quelques recherches sur les équations différentielles du second ordre, Japanese J. Math., 5 (1928), 351-367.
![]() |
[12] |
R. Gaines, Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations, SIAM J. Numer. Anal., 11 (1974), 411-434.
doi: 10.1137/0711035.![]() ![]() ![]() |
[13] |
M. R. Grossinho, F. Minhós and A. I. Santos, A note on a class of problems for a higher-order fully nonlinear equation under one-sided Nagumo-type condition, Nonlinear Anal., 70 (2009), 4027-4038.
doi: 10.1016/j.na.2008.08.011.![]() ![]() ![]() |
[14] |
P. Hartman, Ordinary Differential Equations, The Society for Industrial and Applied Mathematics, 2$^{nd}$, Philadelphia, 2002.
doi: 10.1137/1.9780898719222.![]() ![]() ![]() |
[15] |
W. G. Kelley and A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Inc., Boston, MA, 1991.
![]() ![]() |
[16] |
J. Mahwin, Boundary value problems for nonlinear ordinary differential equations: From successive approximations to topology, in Development of Mathematics 1900-1950, Birkhäuser, Basel, 1994, 443-477.
![]() ![]() |
[17] |
S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc., 45 (1992), 249-260.
doi: 10.1017/S0004972700030112.![]() ![]() ![]() |
[18] |
C. Marcelli and F. Papalini, Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition, Bound. Value Probl., (2017), Paper No. 183, 15 pp.
doi: 10.1186/s13661-017-0913-7.![]() ![]() ![]() |
[19] |
J. Mawhin, The Bernstein-Nagumo problem and two-point boundary value problems for ordinary differential equations, Qualitative Theory of Differential Equations, I, II Szeged, (1979), 709-740, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.
![]() ![]() |
[20] |
J. Mawhin and H. B. Thompson, Nagumo conditions and second-order quasilinear equations with compatible nonlinear functional boundary conditions, Rocky Mountain J. Math., 41 (2011), 573-596.
doi: 10.1216/RMJ-2011-41-2-573.![]() ![]() ![]() |
[21] |
I. Rachůnková and C. C. Tisdell, Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions, Nonlinear Anal., 67 (2007), 1236-1245.
doi: 10.1016/j.na.2006.07.010.![]() ![]() ![]() |
[22] |
C. C. Tisdell, A discrete approach to continuous second-order boundary value problems via monotone iterative techniques, Int. J. Difference Equ., 12 (2017), 145-160.
![]() ![]() |
[23] |
C. C. Tisdell, Y. Liu and Z. Liu, Existence of solutions to discrete and continuous second-order boundary value problems via Lyapunov functions and a priori bounds, Electron. J. Qual. Theory Differ. Equ., (2019), Paper No. 42, 11 pp.
![]() ![]() |