$ ({D_1}, {D_2}, {D_3}) $ | $ n_F^* $ | $ M\left( {\tilde T{C_F}(n_F^*)} \right) $ | $ Q_F^* $ |
(250, 300, 315) | 12.8840 | 2239.0830 | 224.56 |
(200, 300, 375) | 12.9571 | 2252.2537 | 227.16 |
In this research, we explore an innovative finite horizon Economic Order Quantity (EOQ) model for items that deteriorate over time, incorporating the effects of inflation and fuzzy demand characteristics. By applying the centroid method, we translate the fuzzy objective function into a precise, crisp equivalent. Our study introduces a novel approach to determining the optimal replenishment frequency using advanced calculus techniques. To validate the model, we present detailed numerical examples and conduct a sensitivity analysis to examine how variations in model parameters affect the outcomes. This study advances the field by integrating fuzzy logic with economic inventory models and provides insights into managing inventory with deteriorating items in an inflationary environment.
Citation: |
Table 1. Optimal solutions of example 2
$ ({D_1}, {D_2}, {D_3}) $ | $ n_F^* $ | $ M\left( {\tilde T{C_F}(n_F^*)} \right) $ | $ Q_F^* $ |
(250, 300, 315) | 12.8840 | 2239.0830 | 224.56 |
(200, 300, 375) | 12.9571 | 2252.2537 | 227.16 |
Table 2. Sensitivity analysis in fuzzy environment
Variation | Optimal | $ \% $ Change in parameter | ||||
parameter | values | -20 | -10 | 0 | 10 | 20 |
$ D $ | $ \tilde T{C_F}(n) $ | 1997.866 | 2121.826 | 2239.083 | 2350.62 | 2457.201 |
$ D $ | $ n_F^* $ | 11.5444 | 12.2328 | 12.88401 | 13.50347 | 14.09541 |
$ D $ | $ Q_F^* $ | 179.6528 | 202.1094 | 224.566 | 247.0226 | 269.4792 |
$ A $ | $ \tilde T{C_F}(n) $ | 2007.062 | 2126.426 | 2239.083 | 2346.02 | 2448.003 |
$ A $ | $ n_F^* $ | 14.38215 | 13.57053 | 12.88401 | 12.29345 | 11.7784 |
$ A $ | $ Q_F^* $ | 224.566 | 224.566 | 224.566 | 224.566 | 224.566 |
$ h $ | $ \tilde T{C_F}(n) $ | 2104.554 | 2172.836 | 2239.083 | 2303.466 | 2366.134 |
$ h $ | $ n_F^* $ | 12.13688 | 12.5161 | 12.88401 | 13.24158 | 13.58963 |
$ h $ | $ Q_F^* $ | 224.566 | 224.566 | 224.566 | 224.566 | 224.566 |
$ c $ | $ \tilde T{C_F}(n) $ | 2138.961 | 2189.582 | 2239.083 | 2287.536 | 2335.006 |
$ c $ | $ n_F^* $ | 12.32797 | 12.6091 | 12.88401 | 13.15311 | 13.41675 |
$ c $ | $ Q_F^* $ | 224.566 | 224.566 | 224.566 | 224.566 | 224.566 |
$ \theta $ | $ \tilde T{C_F}(n) $ | 2131.709 | 2185.959 | 2239.083 | 2291.153 | 2342.232 |
$ \theta $ | $ n_F^* $ | 12.24707 | 12.56871 | 12.88401 | 13.19339 | 13.4972 |
$ \theta $ | $ Q_F^* $ | 222.8692 | 223.7155 | 224.566 | 225.4208 | 226.2799 |
$ H $ | $ \tilde T{C_F}(n) $ | 1791.266 | 2015.175 | 2239.083 | 2462.991 | 2686.9 |
$ H $ | $ n_F^* $ | 10.30721 | 11.59561 | 12.88401 | 14.17241 | 15.46081 |
$ H $ | $ Q_F^* $ | 178.2954 | 201.3439 | 224.566 | 247.9628 | 271.5359 |
$ r $ | $ \tilde T{C_F}(n) $ | 2255.59 | 2247.32 | 2239.083 | 2230.88 | 2222.711 |
$ r $ | $ n_F^* $ | 12.92636 | 12.9051 | 12.88401 | 12.86308 | 12.84232 |
$ r $ | $ Q_F^* $ | 224.566 | 224.566 | 224.566 | 224.566 | 224.566 |
[1] |
N. Bairagi, S. Bhattacharya, P. Auger and B. Sarkar, Bioeconomics fishery model in presence of infection: Sustainability and demand-price perspectives, Applied Mathematics and Computation, 405 (2021), 126225, 20 pp.
doi: 10.1016/j.amc.2021.126225.![]() ![]() ![]() |
[2] |
M. Bakker, J. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284.
doi: 10.1016/j.ejor.2012.03.004.![]() ![]() ![]() |
[3] |
H. Bierman Jr and J. Thomas, Inventory decisions under inflationary conditions, Decision Sciences, 8 (1977), 151-155.
doi: 10.1111/j.1540-5915.1977.tb01073.x.![]() ![]() |
[4] |
J. A. Buzacott, Economic order quantities with inflation, Journal of the Operational Research Society, 26 (1975), 553-558.
doi: 10.1057/jors.1975.113.![]() ![]() |
[5] |
H.-C. Chang, J.-S. Yao and L.-Y. Ouyang, Fuzzy mixture inventory model with variable lead-time based on probabilistic fuzzy set and triangular fuzzy number, Mathematical and Computer Modelling, 39 (2004), 287-304.
doi: 10.1016/S0895-7177(04)90012-X.![]() ![]() ![]() |
[6] |
S. C. Chang, J. S. Yao and H. M. Lee, Economic reorder point for fuzzy backorder quantity, European Journal of Operational Research, 109 (1998), 183-202.
doi: 10.1016/S0377-2217(97)00069-6.![]() ![]() |
[7] |
P. Chare and G. Schrader, A model for exponentially decaying inventories, Journal of Industrial Engineering, 15 (1963), 238-243.
![]() |
[8] |
S.-H. Chen, C.-C. Wang and R. Arthur, Backorder fuzzy inventory model under function principle, Information Sciences, 95 (1996), 71-79.
doi: 10.1016/S0020-0255(96)00085-0.![]() ![]() |
[9] |
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 5 (1973), 323-326.
doi: 10.1080/05695557308974918.![]() ![]() |
[10] |
S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4.![]() ![]() ![]() |
[11] |
N. Handa, S. R. Singh and N. Punetha, Impact of inflation on production inventory model with variable demand and shortages, Decision Making in Inventory Management, (2021), 37-48.
doi: 10.1007/978-981-16-1729-4_3.![]() ![]() |
[12] |
C. K. Jaggi, A. Sharma and R. Jain, Fuzzification of EOQ model under the condition of permissible delay in payments, International Journal of Strategic Decision Sciences (IJSDS), 3 (2012), 1-19.
doi: 10.4018/jsds.2012040101.![]() ![]() |
[13] |
L. Janssen, T. Claus and J. Sauer, Literature review of deteriorating inventory models by key topics from 2012 to 2015, International Journal of Production Economics, 182 (2016), 86-112.
doi: 10.1016/j.ijpe.2016.08.019.![]() ![]() |
[14] |
P. Jindal and A. Solanki, Integrated vendor-buyer inventory models with inflation and time value of money in controllable lead time, Decision Science Letters, 5 (2016), 81-94.
doi: 10.5267/j.dsl.2015.8.002.![]() ![]() |
[15] |
H. Joshi, B. K. Jha and M. Yavuz, Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data, Mathematical Biosciences and Engineering, 20 (2023), 213-240.
doi: 10.3934/mbe.2023010.![]() ![]() ![]() |
[16] |
H. Joshi, M. Yavuz and I. Stamova, Analysis of the disturbance effect in intracellular calcium dynamic on fibroblast cells with an exponential kernel law, Bulletin of Biomathematics, 1 (2023), 24-39.
doi: 10.59292/bulletinbiomath.2023002.![]() ![]() |
[17] |
H. Joshi, M. Yavuz, S. Townley and B. K. Jha, Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate, Physica Scripta, 98 (2023), 045216.
doi: 10.1088/1402-4896/acbe7a.![]() ![]() |
[18] |
C. Kao and W.-K. Hsu, A single-period inventory model with fuzzy demand, Computers & Mathematics with Applications, 43 (2002), 841-848.
doi: 10.1016/S0898-1221(01)00325-X.![]() ![]() ![]() |
[19] |
M. Karimi, S. J. Sadjadi and A. G. Bijaghini, An economic order quantity for deteriorating items with allowable rework of deteriorated products, Journal of Industrial & Management Optimization, 15 (2019), 1857-1879.
doi: 10.3934/jimo.2018126.![]() ![]() ![]() |
[20] |
N. Kumar and S. Kumar, An inventory model for deteriorating items with partial backlogging using linear demand in fuzzy environment, Cogent Business & Management, 4 (2017), 1307687.
doi: 10.1080/23311975.2017.1307687.![]() ![]() |
[21] |
R. S. Kumar and A. Goswami, A continuous review production-inventory system in fuzzy random environment: Minmax distribution free procedure, Computers & Industrial Engineering, 79 (2015), 65-75.
doi: 10.1016/j.cie.2014.10.022.![]() ![]() |
[22] |
P. Logaprakash and C. Monica, Optimal control of diabetes model with the impact of endocrine-disrupting chemical: An emerging increased diabetes risk factor, Mathematical Modelling and Numerical Simulation with Applications, 3 (2023), 318-334.
![]() |
[23] |
A. K. Malik and H. Garg, An improved fuzzy inventory model under two warehouses, Journal of Artificial Intelligence and Systems, 3 (2021), 115-129.
doi: 10.33969/AIS.2021.31008.![]() ![]() |
[24] |
I. Moon and S. Lee, The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle, European Journal of Operational Research, 125 (2000), 588-601.
doi: 10.1016/S0377-2217(99)00270-2.![]() ![]() ![]() |
[25] |
U. T. Mustapha, Y. A. Maigoro, A. Yusuf and S. Qureshi, Mathematical modeling for the transmission dynamics of cholera with an optimal control strategy, Bulletin of Biomathematics, 2 (2024), 1-20.
doi: 10.59292/bulletinbiomath.2024001.![]() ![]() |
[26] |
K. N. Njoku and B. O. Osu, Effect of inflation on stochastic optimal investment strategies for DC pension under the affine interest rate model, Fundamental Journal of Mathematics and Applications, 2 (2019), 91-100.
doi: 10.33401/fujma.409748.![]() ![]() |
[27] |
B. A. Öztürk, Examination of Sturm-Liouville problem with proportional derivative in control theory, Mathematical Modelling and Numerical Simulation with Applications, 3 (2023), 335-350.
doi: 10.53391/mmnsa.1392796.![]() ![]() |
[28] |
S. Pal, G. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166.
doi: 10.1016/j.ijpe.2014.05.007.![]() ![]() |
[29] |
R. U. Parekh and R. Patel, Deteriorating items inventory models for two warehouses with linear demand, time varying holding cost under inflation and permissible delay in payments, Int. J. of Math. And Statistics Invention, 2 (2014), 39-48.
![]() |
[30] |
K. S. Park, Fuzzy-set theoretic interpretation of economic order quantity, IEEE Transactions on Systems, Man, and Cybernetics, 17 (1987), 1082-1084.
doi: 10.1109/TSMC.1987.6499320.![]() ![]() |
[31] |
R. Patro, M. Acharya, M. M. Nayak and S. Patnaik, A fuzzy imperfect quality inventory model with proportionate discount under learning effect, International Journal of Intelligent Enterprise, 4 (2017), 303-327.
doi: 10.1504/IJIE.2017.089211.![]() ![]() |
[32] |
R. Patro, M. Acharya, M. M. Nayak and S. Patnaik, A fuzzy inventory model with time dependent Weibull deterioration, quadratic demand and partial backlogging, International Journal of Management and Decision Making, 16 (2017), 243-279.
doi: 10.1504/IJMDM.2017.085636.![]() ![]() |
[33] |
G. C. Philip, A generalized EOQ model for items with Weibull distribution deterioration, AIIE transactions, 6 (1974), 159-162.
doi: 10.1080/05695557408974948.![]() ![]() |
[34] |
F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research society, 42 (1991), 27-37.
doi: 10.1057/jors.1991.4.![]() ![]() |
[35] |
J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting, International Journal of Production Economics, 53 (1997), 171-180.
doi: 10.1016/S0925-5273(97)00112-6.![]() ![]() |
[36] |
S. Sahoo and M. Acharya, An inventory model for seasonal deteriorating items with price dependent demand and preservation technology investment in crisp and fuzzy environments, In Recent Trends in Applied Mathematics: Select Proceedings of AMSE 2019, 2021, 255-265.
doi: 10.1007/978-981-15-9817-3_18.![]() ![]() ![]() |
[37] |
B. Sarkar, B. K. Dey, M. Sarkar, S. Hur, B. Mandal and V. Dhaka, Optimal replenishment decision for retailers with variable demand for deteriorating products under a trade-credit policy, RAIRO-Operations Research, 54 (2020), 1685-1701.
doi: 10.1051/ro/2019100.![]() ![]() ![]() |
[38] |
Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIIE transactions, 9 (1977), 108-112.
doi: 10.1080/05695557708975129.![]() ![]() |
[39] |
S. R. Singh and R. Jain, Understanding supplier credits in an inflationary environment when reserve money is available, International Journal of Operational Research, 6 (2009), 459-474.
doi: 10.1504/IJOR.2009.027153.![]() ![]() |
[40] |
S. R. Singh and S. Sharma, A production reliable model for deteriorating products with random demand and inflation, International Journal of Systems Science: Operations & Logistics, 4 (2017), 330-338.
doi: 10.1080/23302674.2016.1181221.![]() ![]() |
[41] |
T. Singh, P. J. Mishra and H. Pattanayak, An EOQ inventory model for deteriorating items with time-dependent deterioration rate, ramp-type demand rate and shortages, International Journal of Mathematics in Operational Research, 12 (2018), 423-437.
doi: 10.1504/IJMOR.2018.092103.![]() ![]() |
[42] |
H. N. Soni and S. N. Suthar, EOQ model of deteriorating items for fuzzy demand and learning in fuzziness with finite horizon, Journal of Control and Decision, 8 (2021), 89-97.
doi: 10.1080/23307706.2019.1638318.![]() ![]() |
[43] |
J.-T. Teng, H.-J. Chang, C.-Y. Dye and C.-H. Hung, An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operations Research Letters, 30 (2002), 387-393.
doi: 10.1016/S0167-6377(02)00150-5.![]() ![]() ![]() |
[44] |
M. Valliathal, A study of inflation effects on an EOQ model for Weibull deteriorating/ameliorating items with ramp type of demand and shortages, Yugoslav Journal of Operations Research, 23 (2016).
doi: 10.2298/YJOR110830008V.![]() ![]() |
[45] |
M. Vishnoi, S. R. Singh and S. Singhal, A Supply chain inventory model with expiration date, variable holding cost in an Inflationary environment, International Journal of Pure and Applied Mathematics, 118 (2018), 1353-1360.
![]() |
[46] |
S. Yadav and S. R. Singh, An Inventory model for deteriorating items with time and stock-dependent consumption rate and shortages under inflation and time discounting, International Transactions in Applied Sciences, 2 (2010).
![]() |
[47] |
H.-L. Yang, J.-T. Teng and M.-S. Chern, Deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand, Naval Research Logistics (NRL), 48 (2001), 144-158.
doi: 10.1002/1520-6750(200103)48:2<144::AID-NAV3>3.0.CO;2-8.![]() ![]() ![]() |
[48] |
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.![]() ![]() |
Graphical representation of the optimal solution of example 4.1
Graphical representation of the optimal solution of example 4.2