\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

EOQ model for deteriorating items with fuzzy demand and finite horizon under inflation effects

  • *Corresponding author: Hardik Joshi

    *Corresponding author: Hardik Joshi
Abstract / Introduction Full Text(HTML) Figure(2) / Table(2) Related Papers Cited by
  • In this research, we explore an innovative finite horizon Economic Order Quantity (EOQ) model for items that deteriorate over time, incorporating the effects of inflation and fuzzy demand characteristics. By applying the centroid method, we translate the fuzzy objective function into a precise, crisp equivalent. Our study introduces a novel approach to determining the optimal replenishment frequency using advanced calculus techniques. To validate the model, we present detailed numerical examples and conduct a sensitivity analysis to examine how variations in model parameters affect the outcomes. This study advances the field by integrating fuzzy logic with economic inventory models and provides insights into managing inventory with deteriorating items in an inflationary environment.

    Mathematics Subject Classification: Primary: 90B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graphical representation of the optimal solution of example 4.1

    Figure 2.  Graphical representation of the optimal solution of example 4.2

    Table 1.  Optimal solutions of example 2

    $ ({D_1}, {D_2}, {D_3}) $ $ n_F^* $ $ M\left( {\tilde T{C_F}(n_F^*)} \right) $ $ Q_F^* $
    (250, 300, 315) 12.8840 2239.0830 224.56
    (200, 300, 375) 12.9571 2252.2537 227.16
     | Show Table
    DownLoad: CSV

    Table 2.  Sensitivity analysis in fuzzy environment

    Variation Optimal $ \% $ Change in parameter
    parameter values -20 -10 0 10 20
    $ D $ $ \tilde T{C_F}(n) $ 1997.866 2121.826 2239.083 2350.62 2457.201
    $ D $ $ n_F^* $ 11.5444 12.2328 12.88401 13.50347 14.09541
    $ D $ $ Q_F^* $ 179.6528 202.1094 224.566 247.0226 269.4792
    $ A $ $ \tilde T{C_F}(n) $ 2007.062 2126.426 2239.083 2346.02 2448.003
    $ A $ $ n_F^* $ 14.38215 13.57053 12.88401 12.29345 11.7784
    $ A $ $ Q_F^* $ 224.566 224.566 224.566 224.566 224.566
    $ h $ $ \tilde T{C_F}(n) $ 2104.554 2172.836 2239.083 2303.466 2366.134
    $ h $ $ n_F^* $ 12.13688 12.5161 12.88401 13.24158 13.58963
    $ h $ $ Q_F^* $ 224.566 224.566 224.566 224.566 224.566
    $ c $ $ \tilde T{C_F}(n) $ 2138.961 2189.582 2239.083 2287.536 2335.006
    $ c $ $ n_F^* $ 12.32797 12.6091 12.88401 13.15311 13.41675
    $ c $ $ Q_F^* $ 224.566 224.566 224.566 224.566 224.566
    $ \theta $ $ \tilde T{C_F}(n) $ 2131.709 2185.959 2239.083 2291.153 2342.232
    $ \theta $ $ n_F^* $ 12.24707 12.56871 12.88401 13.19339 13.4972
    $ \theta $ $ Q_F^* $ 222.8692 223.7155 224.566 225.4208 226.2799
    $ H $ $ \tilde T{C_F}(n) $ 1791.266 2015.175 2239.083 2462.991 2686.9
    $ H $ $ n_F^* $ 10.30721 11.59561 12.88401 14.17241 15.46081
    $ H $ $ Q_F^* $ 178.2954 201.3439 224.566 247.9628 271.5359
    $ r $ $ \tilde T{C_F}(n) $ 2255.59 2247.32 2239.083 2230.88 2222.711
    $ r $ $ n_F^* $ 12.92636 12.9051 12.88401 12.86308 12.84232
    $ r $ $ Q_F^* $ 224.566 224.566 224.566 224.566 224.566
     | Show Table
    DownLoad: CSV
  • [1] N. Bairagi, S. Bhattacharya, P. Auger and B. Sarkar, Bioeconomics fishery model in presence of infection: Sustainability and demand-price perspectives, Applied Mathematics and Computation, 405 (2021), 126225, 20 pp. doi: 10.1016/j.amc.2021.126225.
    [2] M. BakkerJ. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284.  doi: 10.1016/j.ejor.2012.03.004.
    [3] H. Bierman Jr and J. Thomas, Inventory decisions under inflationary conditions, Decision Sciences, 8 (1977), 151-155.  doi: 10.1111/j.1540-5915.1977.tb01073.x.
    [4] J. A. Buzacott, Economic order quantities with inflation, Journal of the Operational Research Society, 26 (1975), 553-558.  doi: 10.1057/jors.1975.113.
    [5] H.-C. ChangJ.-S. Yao and L.-Y. Ouyang, Fuzzy mixture inventory model with variable lead-time based on probabilistic fuzzy set and triangular fuzzy number, Mathematical and Computer Modelling, 39 (2004), 287-304.  doi: 10.1016/S0895-7177(04)90012-X.
    [6] S. C. ChangJ. S. Yao and H. M. Lee, Economic reorder point for fuzzy backorder quantity, European Journal of Operational Research, 109 (1998), 183-202.  doi: 10.1016/S0377-2217(97)00069-6.
    [7] P. Chare and G. Schrader, A model for exponentially decaying inventories, Journal of Industrial Engineering, 15 (1963), 238-243. 
    [8] S.-H. ChenC.-C. Wang and R. Arthur, Backorder fuzzy inventory model under function principle, Information Sciences, 95 (1996), 71-79.  doi: 10.1016/S0020-0255(96)00085-0.
    [9] R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transactions, 5 (1973), 323-326.  doi: 10.1080/05695557308974918.
    [10] S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16.  doi: 10.1016/S0377-2217(00)00248-4.
    [11] N. Handa, S. R. Singh and N. Punetha, Impact of inflation on production inventory model with variable demand and shortages, Decision Making in Inventory Management, (2021), 37-48. doi: 10.1007/978-981-16-1729-4_3.
    [12] C. K. JaggiA. Sharma and R. Jain, Fuzzification of EOQ model under the condition of permissible delay in payments, International Journal of Strategic Decision Sciences (IJSDS), 3 (2012), 1-19.  doi: 10.4018/jsds.2012040101.
    [13] L. JanssenT. Claus and J. Sauer, Literature review of deteriorating inventory models by key topics from 2012 to 2015, International Journal of Production Economics, 182 (2016), 86-112.  doi: 10.1016/j.ijpe.2016.08.019.
    [14] P. Jindal and A. Solanki, Integrated vendor-buyer inventory models with inflation and time value of money in controllable lead time, Decision Science Letters, 5 (2016), 81-94.  doi: 10.5267/j.dsl.2015.8.002.
    [15] H. JoshiB. K. Jha and M. Yavuz, Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data, Mathematical Biosciences and Engineering, 20 (2023), 213-240.  doi: 10.3934/mbe.2023010.
    [16] H. JoshiM. Yavuz and I. Stamova, Analysis of the disturbance effect in intracellular calcium dynamic on fibroblast cells with an exponential kernel law, Bulletin of Biomathematics, 1 (2023), 24-39.  doi: 10.59292/bulletinbiomath.2023002.
    [17] H. JoshiM. YavuzS. Townley and B. K. Jha, Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate, Physica Scripta, 98 (2023), 045216.  doi: 10.1088/1402-4896/acbe7a.
    [18] C. Kao and W.-K. Hsu, A single-period inventory model with fuzzy demand, Computers & Mathematics with Applications, 43 (2002), 841-848.  doi: 10.1016/S0898-1221(01)00325-X.
    [19] M. KarimiS. J. Sadjadi and A. G. Bijaghini, An economic order quantity for deteriorating items with allowable rework of deteriorated products, Journal of Industrial & Management Optimization, 15 (2019), 1857-1879.  doi: 10.3934/jimo.2018126.
    [20] N. Kumar and S. Kumar, An inventory model for deteriorating items with partial backlogging using linear demand in fuzzy environment, Cogent Business & Management, 4 (2017), 1307687.  doi: 10.1080/23311975.2017.1307687.
    [21] R. S. Kumar and A. Goswami, A continuous review production-inventory system in fuzzy random environment: Minmax distribution free procedure, Computers & Industrial Engineering, 79 (2015), 65-75.  doi: 10.1016/j.cie.2014.10.022.
    [22] P. Logaprakash and C. Monica, Optimal control of diabetes model with the impact of endocrine-disrupting chemical: An emerging increased diabetes risk factor, Mathematical Modelling and Numerical Simulation with Applications, 3 (2023), 318-334. 
    [23] A. K. Malik and H. Garg, An improved fuzzy inventory model under two warehouses, Journal of Artificial Intelligence and Systems, 3 (2021), 115-129.  doi: 10.33969/AIS.2021.31008.
    [24] I. Moon and S. Lee, The effects of inflation and time-value of money on an economic order quantity model with a random product life cycle, European Journal of Operational Research, 125 (2000), 588-601.  doi: 10.1016/S0377-2217(99)00270-2.
    [25] U. T. MustaphaY. A. MaigoroA. Yusuf and S. Qureshi, Mathematical modeling for the transmission dynamics of cholera with an optimal control strategy, Bulletin of Biomathematics, 2 (2024), 1-20.  doi: 10.59292/bulletinbiomath.2024001.
    [26] K. N. Njoku and B. O. Osu, Effect of inflation on stochastic optimal investment strategies for DC pension under the affine interest rate model, Fundamental Journal of Mathematics and Applications, 2 (2019), 91-100.  doi: 10.33401/fujma.409748.
    [27] B. A. Öztürk, Examination of Sturm-Liouville problem with proportional derivative in control theory, Mathematical Modelling and Numerical Simulation with Applications, 3 (2023), 335-350.  doi: 10.53391/mmnsa.1392796.
    [28] S. PalG. S. Mahapatra and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment, International Journal of Production Economics, 156 (2014), 159-166.  doi: 10.1016/j.ijpe.2014.05.007.
    [29] R. U. Parekh and R. Patel, Deteriorating items inventory models for two warehouses with linear demand, time varying holding cost under inflation and permissible delay in payments, Int. J. of Math. And Statistics Invention, 2 (2014), 39-48. 
    [30] K. S. Park, Fuzzy-set theoretic interpretation of economic order quantity, IEEE Transactions on Systems, Man, and Cybernetics, 17 (1987), 1082-1084.  doi: 10.1109/TSMC.1987.6499320.
    [31] R. PatroM. AcharyaM. M. Nayak and S. Patnaik, A fuzzy imperfect quality inventory model with proportionate discount under learning effect, International Journal of Intelligent Enterprise, 4 (2017), 303-327.  doi: 10.1504/IJIE.2017.089211.
    [32] R. PatroM. AcharyaM. M. Nayak and S. Patnaik, A fuzzy inventory model with time dependent Weibull deterioration, quadratic demand and partial backlogging, International Journal of Management and Decision Making, 16 (2017), 243-279.  doi: 10.1504/IJMDM.2017.085636.
    [33] G. C. Philip, A generalized EOQ model for items with Weibull distribution deterioration, AIIE transactions, 6 (1974), 159-162.  doi: 10.1080/05695557408974948.
    [34] F. Raafat, Survey of literature on continuously deteriorating inventory models, Journal of the Operational Research society, 42 (1991), 27-37.  doi: 10.1057/jors.1991.4.
    [35] J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting, International Journal of Production Economics, 53 (1997), 171-180.  doi: 10.1016/S0925-5273(97)00112-6.
    [36] S. Sahoo and M. Acharya, An inventory model for seasonal deteriorating items with price dependent demand and preservation technology investment in crisp and fuzzy environments, In Recent Trends in Applied Mathematics: Select Proceedings of AMSE 2019, 2021, 255-265. doi: 10.1007/978-981-15-9817-3_18.
    [37] B. SarkarB. K. DeyM. SarkarS. HurB. Mandal and V. Dhaka, Optimal replenishment decision for retailers with variable demand for deteriorating products under a trade-credit policy, RAIRO-Operations Research, 54 (2020), 1685-1701.  doi: 10.1051/ro/2019100.
    [38] Y. K. Shah, An order-level lot-size inventory model for deteriorating items, AIIE transactions, 9 (1977), 108-112.  doi: 10.1080/05695557708975129.
    [39] S. R. Singh and R. Jain, Understanding supplier credits in an inflationary environment when reserve money is available, International Journal of Operational Research, 6 (2009), 459-474.  doi: 10.1504/IJOR.2009.027153.
    [40] S. R. Singh and S. Sharma, A production reliable model for deteriorating products with random demand and inflation, International Journal of Systems Science: Operations & Logistics, 4 (2017), 330-338.  doi: 10.1080/23302674.2016.1181221.
    [41] T. SinghP. J. Mishra and H. Pattanayak, An EOQ inventory model for deteriorating items with time-dependent deterioration rate, ramp-type demand rate and shortages, International Journal of Mathematics in Operational Research, 12 (2018), 423-437.  doi: 10.1504/IJMOR.2018.092103.
    [42] H. N. Soni and S. N. Suthar, EOQ model of deteriorating items for fuzzy demand and learning in fuzziness with finite horizon, Journal of Control and Decision, 8 (2021), 89-97.  doi: 10.1080/23307706.2019.1638318.
    [43] J.-T. TengH.-J. ChangC.-Y. Dye and C.-H. Hung, An optimal replenishment policy for deteriorating items with time-varying demand and partial backlogging, Operations Research Letters, 30 (2002), 387-393.  doi: 10.1016/S0167-6377(02)00150-5.
    [44] M. Valliathal, A study of inflation effects on an EOQ model for Weibull deteriorating/ameliorating items with ramp type of demand and shortages, Yugoslav Journal of Operations Research, 23 (2016). doi: 10.2298/YJOR110830008V.
    [45] M. VishnoiS. R. Singh and S. Singhal, A Supply chain inventory model with expiration date, variable holding cost in an Inflationary environment, International Journal of Pure and Applied Mathematics, 118 (2018), 1353-1360. 
    [46] S. Yadav and S. R. Singh, An Inventory model for deteriorating items with time and stock-dependent consumption rate and shortages under inflation and time discounting, International Transactions in Applied Sciences, 2 (2010).
    [47] H.-L. YangJ.-T. Teng and M.-S. Chern, Deterministic inventory lot-size models under inflation with shortages and deterioration for fluctuating demand, Naval Research Logistics (NRL), 48 (2001), 144-158.  doi: 10.1002/1520-6750(200103)48:2<144::AID-NAV3>3.0.CO;2-8.
    [48] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.
  • 加载中

Figures(2)

Tables(2)

SHARE

Article Metrics

HTML views(1361) PDF downloads(512) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return