Early Access articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Early Access publication benefits the research community by making new scientific discoveries known as quickly as possible.
Readers can access Early Access articles via the “Early Access” tab for the selected journal.
The fractional Schrödinger-Poisson-Slater equation can be derived from the Thomas-Fermi-Dirac-von Weizsäcker theory of charge screening in graphene. In this paper, we make an effort to study the behavior of bounded sequences in radial fractional Coulomb-Sobolev space under certain conditions, and then apply it to study the existence of Nehari-Pohožaev type ground state solutions for the fractional Schrödinger-Poisson-Slater equation with lower and upper critical exponents.
Citation: |
[1] |
J. Bellazzini, R. L. Frank and N. Visciglia, Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems, Math. Ann., 360 (2014), 653-673.
doi: 10.1007/s00208-014-1046-2.![]() ![]() ![]() |
[2] |
J. Bellazzini, M. Ghimenti, C. Mercuri, V. Moroz and J. Van Schaftingen, Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. Amer. Math. Soc., 370 (2018), 8285-8310.
![]() ![]() |
[3] |
J. Bellazzini, M. Ghimenti and T. Ozawa, Sharp lower bounds for Coulomb energy, Math. Res. Lett., 23 (2016), 621-632.
![]() ![]() |
[4] |
H. Brezis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 8 (1983), 486-490.
doi: 10.1090/S0002-9939-1983-0699419-3.![]() ![]() ![]() |
[5] |
I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger-Poisson-Slater problem, Commun. Contemp. Math., 14 (2012), 1250003, 22 pp.
doi: 10.1142/S0219199712500034.![]() ![]() ![]() |
[6] |
C. Le Bris and P. L. Lions, From atoms to crystals: A mathematical journey, Bull. Amer. Math. Soc. (N.S.), 42 (2005), 291-363.
![]() ![]() |
[7] |
C. Lei and Y. Lei, On the existence of ground states of an equation of Schrödinger-Poisson-Slater type, C. R. Math. Acad. Sci. Paris, 359 (2021), 219-227.
doi: 10.5802/crmath.175.![]() ![]() ![]() |
[8] |
E. H. Lieb, On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. Math., 74 (1983), 441-448.
doi: 10.1007/BF01394245.![]() ![]() ![]() |
[9] |
E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advances in Math., 23 (1977), 22-116.
![]() ![]() |
[10] |
P. L. Lions, Some remarks on Hartree equation, Nonlinear Anal., 5 (1981), 1245-1256.
doi: 10.1016/0362-546X(81)90016-X.![]() ![]() ![]() |
[11] |
P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, Comm. Math. Phys., 109 (1987), 33-97.
![]() ![]() |
[12] |
Z. Liu, Z. Zhang and S. Huang, Existence and nonexistence of positive solutions for a static Schrödinger-Poisson-Slater equation, J. Differential Equations, 266 (2019), 5912-5941.
![]() ![]() |
[13] |
J. Lu, V. Moroz and C. B. Muratov, Orbital-free density functional theory of out-ofplane charge screening in graphene, J. Nonlinear Sci., 25 (2015), 1391-1430.
doi: 10.1007/s00332-015-9259-4.![]() ![]() ![]() |
[14] |
C. Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differential Equations, 55 (2016), 58 pp.
doi: 10.1007/s00526-016-1079-3.![]() ![]() ![]() |
[15] |
G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.
![]() ![]() |
[16] |
D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.
![]() ![]() |
[17] |
M. Willem, Minimax Theorems, Birkhäuser, Boston 1996.
![]() ![]() |