June  2012, 1(1): 109-140. doi: 10.3934/eect.2012.1.109

Certain questions of feedback stabilization for Navier-Stokes equations

1. 

Department of Mechanics & Mathematics, Moscow State University, Moscow 119991

2. 

Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russian Federation

Received  November 2011 Revised  February 2012 Published  March 2012

The authors study the stabilization problem for Navier-Stokes and Oseen equations near steady-state solution by feedback control. The cases of control in initial condition (start control) as well as impulse and distributed controls in right side supported in a fixed subdomain of the domain $G$ filled with a fluid are investigated. The cases of bounded and unbounded domain $G$ are considered.
Citation: Andrei Fursikov, Alexey V. Gorshkov. Certain questions of feedback stabilization for Navier-Stokes equations. Evolution Equations & Control Theory, 2012, 1 (1) : 109-140. doi: 10.3934/eect.2012.1.109
References:
[1]

M. S. Agranovich and M. I. Vishik, Elliptic boundary problems with parameter and parabolic problems of general type, (Russian),, Russian Math. Surveys, 19 (1964), 43.  doi: 10.1070/RM1964v019n03ABEH001149.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992).   Google Scholar

[3]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, ESAIM Control, 9 (2003), 197.  doi: 10.1051/cocv:2003009.  Google Scholar

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract setting of tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers,, Nonlinear Analysis, 64 (2006), 2704.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[5]

V. Barbu, S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, 2010, ().   Google Scholar

[6]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimentional controllers,, Indiana Univ. Math. J., 53 (2004), 1443.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[7]

A. V. Fursikov, Stabilizability of quasilinear parabolic equation by feedback boundary control,, Sbornik: Mathematics, 192 (2001), 593.  doi: 10.1070/SM2001v192n04ABEH000560.  Google Scholar

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control,, J. of Math. Fluid Mechanics, 3 (2001), 259.  doi: 10.1007/PL00000972.  Google Scholar

[9]

A. V. Fursikov, Feedback stabilization for the 2D Navier-Stokes equations,, in, 223 (2002), 179.   Google Scholar

[10]

A. V. Fursikov, Feedback stabilization for the 2D Oseen equations: Additional remarks,, in, 143 (2002), 169.   Google Scholar

[11]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial Differential Equations and Applications,, Discrete and Cont. Dyn. Syst., 10 (2004), 289.   Google Scholar

[12]

A. V. Fursikov, Real process corresponding to 3D Navier-Stokes system, and its feedback stabilization from boundary,, in, 206 (2002), 95.   Google Scholar

[13]

A. V. Fursikov, Real processes and realizability of a stabilization method for Navier-Stokes equations by boundary feedback control,, in, 2 (2002), 137.   Google Scholar

[14]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications,", Transl. of Math. Mongraphs, 187 (2000).   Google Scholar

[15]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations,, Discrete and Continuous Dynamical System, 3 (2010), 269.  doi: 10.3934/dcdss.2010.3.269.  Google Scholar

[16]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Ser., 34 (1996).   Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of Navier-Stokes and Boussinesq equations,, Russian Math. Surveys, 54 (1999), 565.  doi: 10.1070/RM1999v054n03ABEH000153.  Google Scholar

[18]

Th. Gallay and C. E. Wayne, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on $\mathbbR^2$,, Arch. Ration. Mech. Anal., 163 (2002), 209.  doi: 10.1007/s002050200200.  Google Scholar

[19]

A. V. Gorshkov, Stabilization of the one-dimensional heat equation on a semibounded rod,, Uspekhi Mat. Nauk, 56 (2001), 213.  doi: 10.1070/RM2001v056n02ABEH000388.  Google Scholar

[20]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[21]

K. Iosida, "Functional Analysis,", Springer-Verlag, (1965).   Google Scholar

[22]

A. A. Ivanchikov, On numerical stabilization of unstable Couette flow by the boundary conditions,, Russ. J. Numer. Anal. Math. Modelling, 21 (2006), 519.  doi: 10.1515/rnam.2006.21.6.519.  Google Scholar

[23]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Revised English edition, (1963).   Google Scholar

[24]

O. A. Ladyžhenskaya and V. A. Solonnikov, On linearization principle and invariant manifolds for problems of magnetichydromechanics, (Russian), Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 38 (1973), 46.   Google Scholar

[25]

J.-L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications,, Vol. 1, (1968).   Google Scholar

[26]

J. E. Marsden and M. McCracken, "The Hopf Bifurcation and Its Applications,", Applied Mathematical Sciences, (1976).   Google Scholar

[27]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, J. Math. Pures Appl. (9), 87 (2007), 627.  doi: 10.1016/j.matpur.2007.04.002.  Google Scholar

[28]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Third editon, 2 (1984).   Google Scholar

[29]

M. I. Vishik and A. V. Fursikov, "Mathematical Problems of Statistical Hydromechanics,", Kluwer Acad. Publ., (1988).   Google Scholar

show all references

References:
[1]

M. S. Agranovich and M. I. Vishik, Elliptic boundary problems with parameter and parabolic problems of general type, (Russian),, Russian Math. Surveys, 19 (1964), 43.  doi: 10.1070/RM1964v019n03ABEH001149.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", Studies in Mathematics and its Applications, 25 (1992).   Google Scholar

[3]

V. Barbu, Feedback stabilization of Navier-Stokes equations,, ESAIM Control, 9 (2003), 197.  doi: 10.1051/cocv:2003009.  Google Scholar

[4]

V. Barbu, I. Lasiecka and R. Triggiani, Abstract setting of tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers,, Nonlinear Analysis, 64 (2006), 2704.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[5]

V. Barbu, S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a non-stationary solution for 3D Navier-Stokes equations,, 2010, ().   Google Scholar

[6]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimentional controllers,, Indiana Univ. Math. J., 53 (2004), 1443.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[7]

A. V. Fursikov, Stabilizability of quasilinear parabolic equation by feedback boundary control,, Sbornik: Mathematics, 192 (2001), 593.  doi: 10.1070/SM2001v192n04ABEH000560.  Google Scholar

[8]

A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control,, J. of Math. Fluid Mechanics, 3 (2001), 259.  doi: 10.1007/PL00000972.  Google Scholar

[9]

A. V. Fursikov, Feedback stabilization for the 2D Navier-Stokes equations,, in, 223 (2002), 179.   Google Scholar

[10]

A. V. Fursikov, Feedback stabilization for the 2D Oseen equations: Additional remarks,, in, 143 (2002), 169.   Google Scholar

[11]

A. V. Fursikov, Stabilization for the 3D Navier-Stokes system by feedback boundary control. Partial Differential Equations and Applications,, Discrete and Cont. Dyn. Syst., 10 (2004), 289.   Google Scholar

[12]

A. V. Fursikov, Real process corresponding to 3D Navier-Stokes system, and its feedback stabilization from boundary,, in, 206 (2002), 95.   Google Scholar

[13]

A. V. Fursikov, Real processes and realizability of a stabilization method for Navier-Stokes equations by boundary feedback control,, in, 2 (2002), 137.   Google Scholar

[14]

A. V. Fursikov, "Optimal Control of Distributed Systems. Theory and Applications,", Transl. of Math. Mongraphs, 187 (2000).   Google Scholar

[15]

A. V. Fursikov, Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations,, Discrete and Continuous Dynamical System, 3 (2010), 269.  doi: 10.3934/dcdss.2010.3.269.  Google Scholar

[16]

A. V. Fursikov and O. Yu. Imanuvilov, "Controllability of Evolution Equations,", Lecture Notes Ser., 34 (1996).   Google Scholar

[17]

A. V. Fursikov and O. Yu. Imanuvilov, Exact controllability of Navier-Stokes and Boussinesq equations,, Russian Math. Surveys, 54 (1999), 565.  doi: 10.1070/RM1999v054n03ABEH000153.  Google Scholar

[18]

Th. Gallay and C. E. Wayne, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on $\mathbbR^2$,, Arch. Ration. Mech. Anal., 163 (2002), 209.  doi: 10.1007/s002050200200.  Google Scholar

[19]

A. V. Gorshkov, Stabilization of the one-dimensional heat equation on a semibounded rod,, Uspekhi Mat. Nauk, 56 (2001), 213.  doi: 10.1070/RM2001v056n02ABEH000388.  Google Scholar

[20]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,", Lecture Notes in Mathematics, 840 (1981).   Google Scholar

[21]

K. Iosida, "Functional Analysis,", Springer-Verlag, (1965).   Google Scholar

[22]

A. A. Ivanchikov, On numerical stabilization of unstable Couette flow by the boundary conditions,, Russ. J. Numer. Anal. Math. Modelling, 21 (2006), 519.  doi: 10.1515/rnam.2006.21.6.519.  Google Scholar

[23]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,", Revised English edition, (1963).   Google Scholar

[24]

O. A. Ladyžhenskaya and V. A. Solonnikov, On linearization principle and invariant manifolds for problems of magnetichydromechanics, (Russian), Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 38 (1973), 46.   Google Scholar

[25]

J.-L. Lions and E. Magenes, Problémes aux Limites Non Homogénes et Applications,, Vol. 1, (1968).   Google Scholar

[26]

J. E. Marsden and M. McCracken, "The Hopf Bifurcation and Its Applications,", Applied Mathematical Sciences, (1976).   Google Scholar

[27]

J.-P. Raymond, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations,, J. Math. Pures Appl. (9), 87 (2007), 627.  doi: 10.1016/j.matpur.2007.04.002.  Google Scholar

[28]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,", Third editon, 2 (1984).   Google Scholar

[29]

M. I. Vishik and A. V. Fursikov, "Mathematical Problems of Statistical Hydromechanics,", Kluwer Acad. Publ., (1988).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]