# American Institute of Mathematical Sciences

June  2012, 1(1): 17-42. doi: 10.3934/eect.2012.1.17

## On Kelvin-Voigt model and its generalizations

 1 Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic, Czech Republic 2 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, United States

Received  October 2011 Revised  February 2012 Published  March 2012

We consider a generalization of the Kelvin-Voigt model where the elastic part of the Cauchy stress depends non-linearly on the linearized strain and the dissipative part of the Cauchy stress is a nonlinear function of the symmetric part of the velocity gradient. The assumption that the Cauchy stress depends non-linearly on the linearized strain can be justified if one starts with the assumption that the kinematical quantity, the left Cauchy-Green stretch tensor, is a nonlinear function of the Cauchy stress, and linearizes under the assumption that the displacement gradient is small. Long-time and large data existence, uniqueness and regularity properties of weak solution to such a generalized Kelvin-Voigt model are established for the non-homogeneous mixed boundary value problem. The main novelty with regard to the mathematical analysis consists in including nonlinear (non-quadratic) dissipation in the problem.
Citation: Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17
##### References:
 [1] M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 1995-2010.  Google Scholar [2] M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, in "Mathematical Aspects of Fluid Mechanics" (eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski), London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, 2012. Google Scholar [3] M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., revised version submitted, 2011. Google Scholar [4] E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar [5] L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1-46.  Google Scholar [6] E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order, Found. Comput. Math., 10 (2010), 171-190. doi: 10.1007/s10208-010-9061-5.  Google Scholar [7] E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.  Google Scholar [8] E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.  Google Scholar [9] J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids, Comm. Partial Differential Equations, 35 (2010), 1891-1919.  Google Scholar [10] J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids, Math. Z., 260 (2008), 355-375. doi: 10.1007/s00209-007-0278-1.  Google Scholar [11] A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity, Pacific J. Math., 135 (1988), 29-55.  Google Scholar [12] G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy, SIAM J. Math. Anal., 28 (1997), 363-380. doi: 10.1137/S0036141095285958.  Google Scholar [13] Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues," Springer-Verlag, 1993. Google Scholar [14] A. Kufner, O. John and S. Fučík, "Function Spaces," Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden, Academia, Prague, 1977.  Google Scholar [15] J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar [16] J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$, Adv. Differential Equations, 6 (2001), 257-302.  Google Scholar [17] J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs," Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996.  Google Scholar [18] K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model, Mechanics Research Communications, 36 (2009), 232-235. doi: 10.1016/j.mechrescom.2008.09.005.  Google Scholar [19] W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943), 13 pp.  Google Scholar [20] W. Thompson, On the elasticity and viscosity of metals, Proc. Roy. Soc. London A, 14 (1865), 289-297. doi: 10.1098/rspl.1865.0052.  Google Scholar [21] B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type, Arch. Ration. Mech. Anal., 189 (2008), 237-281. doi: 10.1007/s00205-007-0109-x.  Google Scholar [22] W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle, Annalen der Physik, 283 (1892), 671-693. doi: 10.1002/andp.18922831210.  Google Scholar

show all references

##### References:
 [1] M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010), 1995-2010.  Google Scholar [2] M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, in "Mathematical Aspects of Fluid Mechanics" (eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski), London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, 2012. Google Scholar [3] M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., revised version submitted, 2011. Google Scholar [4] E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar [5] L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1-46.  Google Scholar [6] E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order, Found. Comput. Math., 10 (2010), 171-190. doi: 10.1007/s10208-010-9061-5.  Google Scholar [7] E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, Oxford, 2004.  Google Scholar [8] E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids," Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.  Google Scholar [9] J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids, Comm. Partial Differential Equations, 35 (2010), 1891-1919.  Google Scholar [10] J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids, Math. Z., 260 (2008), 355-375. doi: 10.1007/s00209-007-0278-1.  Google Scholar [11] A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity, Pacific J. Math., 135 (1988), 29-55.  Google Scholar [12] G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy, SIAM J. Math. Anal., 28 (1997), 363-380. doi: 10.1137/S0036141095285958.  Google Scholar [13] Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues," Springer-Verlag, 1993. Google Scholar [14] A. Kufner, O. John and S. Fučík, "Function Spaces," Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden, Academia, Prague, 1977.  Google Scholar [15] J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar [16] J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$, Adv. Differential Equations, 6 (2001), 257-302.  Google Scholar [17] J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs," Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996.  Google Scholar [18] K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model, Mechanics Research Communications, 36 (2009), 232-235. doi: 10.1016/j.mechrescom.2008.09.005.  Google Scholar [19] W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943), 13 pp.  Google Scholar [20] W. Thompson, On the elasticity and viscosity of metals, Proc. Roy. Soc. London A, 14 (1865), 289-297. doi: 10.1098/rspl.1865.0052.  Google Scholar [21] B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type, Arch. Ration. Mech. Anal., 189 (2008), 237-281. doi: 10.1007/s00205-007-0109-x.  Google Scholar [22] W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle, Annalen der Physik, 283 (1892), 671-693. doi: 10.1002/andp.18922831210.  Google Scholar
 [1] Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 [2] Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029 [3] Miroslav Bulíček, Victoria Patel, Yasemin Şengül, Endre Süli. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1931-1960. doi: 10.3934/cpaa.2021053 [4] Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control & Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 [5] Mohammad Akil, Ibtissam Issa, Ali Wehbe. Energy decay of some boundary coupled systems involving wave\ Euler-Bernoulli beam with one locally singular fractional Kelvin-Voigt damping. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021059 [6] Louis Tebou. Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7117-7136. doi: 10.3934/dcds.2016110 [7] Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455 [8] Ahmad El Hajj, Aya Oussaily. Continuous solution for a non-linear eikonal system. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3795-3823. doi: 10.3934/cpaa.2021131 [9] Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191 [10] Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184 [11] Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247 [12] Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485 [13] Manil T. Mohan. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. Evolution Equations & Control Theory, 2020, 9 (2) : 301-339. doi: 10.3934/eect.2020007 [14] Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2022, 11 (1) : 125-167. doi: 10.3934/eect.2020105 [15] Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 [16] César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535 [17] Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124 [18] Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2021, 11 (4) : 885-904. doi: 10.3934/mcrf.2020050 [19] Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240 [20] José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

2020 Impact Factor: 1.081