June  2012, 1(1): 17-42. doi: 10.3934/eect.2012.1.17

On Kelvin-Voigt model and its generalizations

1. 

Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic, Czech Republic

2. 

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, United States

Received  October 2011 Revised  February 2012 Published  March 2012

We consider a generalization of the Kelvin-Voigt model where the elastic part of the Cauchy stress depends non-linearly on the linearized strain and the dissipative part of the Cauchy stress is a nonlinear function of the symmetric part of the velocity gradient. The assumption that the Cauchy stress depends non-linearly on the linearized strain can be justified if one starts with the assumption that the kinematical quantity, the left Cauchy-Green stretch tensor, is a nonlinear function of the Cauchy stress, and linearizes under the assumption that the displacement gradient is small. Long-time and large data existence, uniqueness and regularity properties of weak solution to such a generalized Kelvin-Voigt model are established for the non-homogeneous mixed boundary value problem. The main novelty with regard to the mathematical analysis consists in including nonlinear (non-quadratic) dissipation in the problem.
Citation: Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17
References:
[1]

Math. Methods Appl. Sci., 33 (2010), 1995-2010.  Google Scholar

[2]

in "Mathematical Aspects of Fluid Mechanics" (eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski), London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, 2012. Google Scholar

[3]

SIAM J. Math. Anal., revised version submitted, 2011. Google Scholar

[4]

McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar

[5]

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1-46.  Google Scholar

[6]

Found. Comput. Math., 10 (2010), 171-190. doi: 10.1007/s10208-010-9061-5.  Google Scholar

[7]

Oxford University Press, Oxford, 2004.  Google Scholar

[8]

Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.  Google Scholar

[9]

Comm. Partial Differential Equations, 35 (2010), 1891-1919.  Google Scholar

[10]

Math. Z., 260 (2008), 355-375. doi: 10.1007/s00209-007-0278-1.  Google Scholar

[11]

Pacific J. Math., 135 (1988), 29-55.  Google Scholar

[12]

SIAM J. Math. Anal., 28 (1997), 363-380. doi: 10.1137/S0036141095285958.  Google Scholar

[13]

Springer-Verlag, 1993. Google Scholar

[14]

Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden, Academia, Prague, 1977.  Google Scholar

[15]

Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[16]

Adv. Differential Equations, 6 (2001), 257-302.  Google Scholar

[17]

Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996.  Google Scholar

[18]

Mechanics Research Communications, 36 (2009), 232-235. doi: 10.1016/j.mechrescom.2008.09.005.  Google Scholar

[19]

Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943), 13 pp.  Google Scholar

[20]

Proc. Roy. Soc. London A, 14 (1865), 289-297. doi: 10.1098/rspl.1865.0052.  Google Scholar

[21]

Arch. Ration. Mech. Anal., 189 (2008), 237-281. doi: 10.1007/s00205-007-0109-x.  Google Scholar

[22]

Annalen der Physik, 283 (1892), 671-693. doi: 10.1002/andp.18922831210.  Google Scholar

show all references

References:
[1]

Math. Methods Appl. Sci., 33 (2010), 1995-2010.  Google Scholar

[2]

in "Mathematical Aspects of Fluid Mechanics" (eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski), London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, 2012. Google Scholar

[3]

SIAM J. Math. Anal., revised version submitted, 2011. Google Scholar

[4]

McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.  Google Scholar

[5]

Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1-46.  Google Scholar

[6]

Found. Comput. Math., 10 (2010), 171-190. doi: 10.1007/s10208-010-9061-5.  Google Scholar

[7]

Oxford University Press, Oxford, 2004.  Google Scholar

[8]

Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009.  Google Scholar

[9]

Comm. Partial Differential Equations, 35 (2010), 1891-1919.  Google Scholar

[10]

Math. Z., 260 (2008), 355-375. doi: 10.1007/s00209-007-0278-1.  Google Scholar

[11]

Pacific J. Math., 135 (1988), 29-55.  Google Scholar

[12]

SIAM J. Math. Anal., 28 (1997), 363-380. doi: 10.1137/S0036141095285958.  Google Scholar

[13]

Springer-Verlag, 1993. Google Scholar

[14]

Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden, Academia, Prague, 1977.  Google Scholar

[15]

Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[16]

Adv. Differential Equations, 6 (2001), 257-302.  Google Scholar

[17]

Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996.  Google Scholar

[18]

Mechanics Research Communications, 36 (2009), 232-235. doi: 10.1016/j.mechrescom.2008.09.005.  Google Scholar

[19]

Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943), 13 pp.  Google Scholar

[20]

Proc. Roy. Soc. London A, 14 (1865), 289-297. doi: 10.1098/rspl.1865.0052.  Google Scholar

[21]

Arch. Ration. Mech. Anal., 189 (2008), 237-281. doi: 10.1007/s00205-007-0109-x.  Google Scholar

[22]

Annalen der Physik, 283 (1892), 671-693. doi: 10.1002/andp.18922831210.  Google Scholar

[1]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[4]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[5]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[6]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[7]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[8]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[9]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[10]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[11]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[12]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[13]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[14]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[15]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[16]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[18]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[19]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[20]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (194)
  • HTML views (0)
  • Cited by (22)

[Back to Top]