June  2012, 1(1): 17-42. doi: 10.3934/eect.2012.1.17

On Kelvin-Voigt model and its generalizations

1. 

Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic, Czech Republic

2. 

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, United States

Received  October 2011 Revised  February 2012 Published  March 2012

We consider a generalization of the Kelvin-Voigt model where the elastic part of the Cauchy stress depends non-linearly on the linearized strain and the dissipative part of the Cauchy stress is a nonlinear function of the symmetric part of the velocity gradient. The assumption that the Cauchy stress depends non-linearly on the linearized strain can be justified if one starts with the assumption that the kinematical quantity, the left Cauchy-Green stretch tensor, is a nonlinear function of the Cauchy stress, and linearizes under the assumption that the displacement gradient is small. Long-time and large data existence, uniqueness and regularity properties of weak solution to such a generalized Kelvin-Voigt model are established for the non-homogeneous mixed boundary value problem. The main novelty with regard to the mathematical analysis consists in including nonlinear (non-quadratic) dissipation in the problem.
Citation: Miroslav Bulíček, Josef Málek, K. R. Rajagopal. On Kelvin-Voigt model and its generalizations. Evolution Equations & Control Theory, 2012, 1 (1) : 17-42. doi: 10.3934/eect.2012.1.17
References:
[1]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 1995.   Google Scholar

[2]

M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph,, in, (2012).   Google Scholar

[3]

M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids,, SIAM J. Math. Anal., (2011).   Google Scholar

[4]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).   Google Scholar

[5]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1.   Google Scholar

[6]

E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order,, Found. Comput. Math., 10 (2010), 171.  doi: 10.1007/s10208-010-9061-5.  Google Scholar

[7]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26,, Oxford University Press, (2004).   Google Scholar

[8]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).   Google Scholar

[9]

J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids,, Comm. Partial Differential Equations, 35 (2010), 1891.   Google Scholar

[10]

J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids,, Math. Z., 260 (2008), 355.  doi: 10.1007/s00209-007-0278-1.  Google Scholar

[11]

A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity,, Pacific J. Math., 135 (1988), 29.   Google Scholar

[12]

G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy,, SIAM J. Math. Anal., 28 (1997), 363.  doi: 10.1137/S0036141095285958.  Google Scholar

[13]

Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues,", Springer-Verlag, (1993).   Google Scholar

[14]

A. Kufner, O. John and S. Fučík, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[16]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$,, Adv. Differential Equations, 6 (2001), 257.   Google Scholar

[17]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).   Google Scholar

[18]

K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model,, Mechanics Research Communications, 36 (2009), 232.  doi: 10.1016/j.mechrescom.2008.09.005.  Google Scholar

[19]

W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters,, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943).   Google Scholar

[20]

W. Thompson, On the elasticity and viscosity of metals,, Proc. Roy. Soc. London A, 14 (1865), 289.  doi: 10.1098/rspl.1865.0052.  Google Scholar

[21]

B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Ration. Mech. Anal., 189 (2008), 237.  doi: 10.1007/s00205-007-0109-x.  Google Scholar

[22]

W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle,, Annalen der Physik, 283 (1892), 671.  doi: 10.1002/andp.18922831210.  Google Scholar

show all references

References:
[1]

M. Bulíček, F. Ettwein, P. Kaplický and D. Pražák, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids,, Math. Methods Appl. Sci., 33 (2010), 1995.   Google Scholar

[2]

M. Bulíček, P. Gwiazda, J. Málek, K. R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph,, in, (2012).   Google Scholar

[3]

M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids,, SIAM J. Math. Anal., (2011).   Google Scholar

[4]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill Book Company, (1955).   Google Scholar

[5]

L. Diening, M. Růžička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1.   Google Scholar

[6]

E. Emmrich and M. Thalhammer, Convergence of a time discretisation for doubly nonlinear evolution equations of second order,, Found. Comput. Math., 10 (2010), 171.  doi: 10.1007/s10208-010-9061-5.  Google Scholar

[7]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford Lecture Series in Mathematics and its Applications, 26,, Oxford University Press, (2004).   Google Scholar

[8]

E. Feireisl and A. Novotný, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).   Google Scholar

[9]

J. Frehse, J. Málek and M. Růžička, Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids,, Comm. Partial Differential Equations, 35 (2010), 1891.   Google Scholar

[10]

J. Frehse and M. Růžička, Non-homogeneous generalized Newtonian fluids,, Math. Z., 260 (2008), 355.  doi: 10.1007/s00209-007-0278-1.  Google Scholar

[11]

A. Friedman and J. Nečas, Systems of nonlinear wave equations with nonlinear viscosity,, Pacific J. Math., 135 (1988), 29.   Google Scholar

[12]

G. Friesecke and G. Dolzmann, Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy,, SIAM J. Math. Anal., 28 (1997), 363.  doi: 10.1137/S0036141095285958.  Google Scholar

[13]

Y. Fung, "Biomechanics: Mechanical Properties of Living Tissues,", Springer-Verlag, (1993).   Google Scholar

[14]

A. Kufner, O. John and S. Fučík, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar

[15]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).   Google Scholar

[16]

J. Málek, J. Nečas and M. Růžička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq2$,, Adv. Differential Equations, 6 (2001), 257.   Google Scholar

[17]

J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs,", Applied Mathematics and Mathematical Computation, 13 (1996).   Google Scholar

[18]

K. R. Rajagopal, A note on a reappraisal and generalization of the Kelvin-Voigt Model,, Mechanics Research Communications, 36 (2009), 232.  doi: 10.1016/j.mechrescom.2008.09.005.  Google Scholar

[19]

W. Ramberg and W. R. Osgood, Description of stress-strain curves by three parameters,, Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943).   Google Scholar

[20]

W. Thompson, On the elasticity and viscosity of metals,, Proc. Roy. Soc. London A, 14 (1865), 289.  doi: 10.1098/rspl.1865.0052.  Google Scholar

[21]

B. Tvedt, Quasilinear equations for viscoelasticity of strain-rate type,, Arch. Ration. Mech. Anal., 189 (2008), 237.  doi: 10.1007/s00205-007-0109-x.  Google Scholar

[22]

W. Voigt, Ueber innere Reibung fester Körper, insbesondere der Metalle,, Annalen der Physik, 283 (1892), 671.  doi: 10.1002/andp.18922831210.  Google Scholar

[1]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[2]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[3]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[4]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[5]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[6]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[11]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[12]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[13]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[14]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[18]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[19]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[20]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (159)
  • HTML views (0)
  • Cited by (19)

[Back to Top]