-
Previous Article
Invariance for stochastic reaction-diffusion equations
- EECT Home
- This Issue
-
Next Article
Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension
On Kelvin-Voigt model and its generalizations
1. | Mathematical Institute of Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Prague, Czech Republic, Czech Republic |
2. | Department of Mechanical Engineering, Texas A&M University, College Station, TX 77845, United States |
References:
[1] |
Math. Methods Appl. Sci., 33 (2010), 1995-2010. |
[2] |
in "Mathematical Aspects of Fluid Mechanics" (eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski), London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, 2012. Google Scholar |
[3] |
SIAM J. Math. Anal., revised version submitted, 2011. Google Scholar |
[4] |
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. |
[5] |
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1-46. |
[6] |
Found. Comput. Math., 10 (2010), 171-190.
doi: 10.1007/s10208-010-9061-5. |
[7] |
Oxford University Press, Oxford, 2004. |
[8] |
Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. |
[9] |
Comm. Partial Differential Equations, 35 (2010), 1891-1919. |
[10] |
Math. Z., 260 (2008), 355-375.
doi: 10.1007/s00209-007-0278-1. |
[11] |
Pacific J. Math., 135 (1988), 29-55. |
[12] |
SIAM J. Math. Anal., 28 (1997), 363-380.
doi: 10.1137/S0036141095285958. |
[13] |
Springer-Verlag, 1993. Google Scholar |
[14] |
Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden, Academia, Prague, 1977. |
[15] |
Dunod, Gauthier-Villars, Paris, 1969. |
[16] |
Adv. Differential Equations, 6 (2001), 257-302. |
[17] |
Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996. |
[18] |
Mechanics Research Communications, 36 (2009), 232-235.
doi: 10.1016/j.mechrescom.2008.09.005. |
[19] |
Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943), 13 pp. |
[20] |
Proc. Roy. Soc. London A, 14 (1865), 289-297.
doi: 10.1098/rspl.1865.0052. |
[21] |
Arch. Ration. Mech. Anal., 189 (2008), 237-281.
doi: 10.1007/s00205-007-0109-x. |
[22] |
Annalen der Physik, 283 (1892), 671-693.
doi: 10.1002/andp.18922831210. |
show all references
References:
[1] |
Math. Methods Appl. Sci., 33 (2010), 1995-2010. |
[2] |
in "Mathematical Aspects of Fluid Mechanics" (eds. J. C. Robinson, J. L. Rodrigo and W. Sadowski), London Mathematical Society Lecture Note Series, Cambridge University Press, to appear, 2012. Google Scholar |
[3] |
SIAM J. Math. Anal., revised version submitted, 2011. Google Scholar |
[4] |
McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. |
[5] |
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 1-46. |
[6] |
Found. Comput. Math., 10 (2010), 171-190.
doi: 10.1007/s10208-010-9061-5. |
[7] |
Oxford University Press, Oxford, 2004. |
[8] |
Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2009. |
[9] |
Comm. Partial Differential Equations, 35 (2010), 1891-1919. |
[10] |
Math. Z., 260 (2008), 355-375.
doi: 10.1007/s00209-007-0278-1. |
[11] |
Pacific J. Math., 135 (1988), 29-55. |
[12] |
SIAM J. Math. Anal., 28 (1997), 363-380.
doi: 10.1137/S0036141095285958. |
[13] |
Springer-Verlag, 1993. Google Scholar |
[14] |
Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, Noordhoff International Publishing, Leyden, Academia, Prague, 1977. |
[15] |
Dunod, Gauthier-Villars, Paris, 1969. |
[16] |
Adv. Differential Equations, 6 (2001), 257-302. |
[17] |
Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996. |
[18] |
Mechanics Research Communications, 36 (2009), 232-235.
doi: 10.1016/j.mechrescom.2008.09.005. |
[19] |
Technical Notes Nat. Adv. Comm. Aeronaut., 1943 (1943), 13 pp. |
[20] |
Proc. Roy. Soc. London A, 14 (1865), 289-297.
doi: 10.1098/rspl.1865.0052. |
[21] |
Arch. Ration. Mech. Anal., 189 (2008), 237-281.
doi: 10.1007/s00205-007-0109-x. |
[22] |
Annalen der Physik, 283 (1892), 671-693.
doi: 10.1002/andp.18922831210. |
[1] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
[2] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[3] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405 |
[4] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[5] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[6] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[7] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[8] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[9] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[10] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[11] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[12] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[13] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[14] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[15] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 |
[16] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[17] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384 |
[18] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[19] |
Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046 |
[20] |
Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]