June  2012, 1(1): 171-194. doi: 10.3934/eect.2012.1.171

On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities

1. 

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-60120 Halle, Germany

2. 

Department of Mathematics and Research Institute of Science and Engineering, JST CREST, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

3. 

Department of Mathematics, Shizuoka University, Shizuoka 422-8529, Japan

4. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37240

Received  September 2011 Revised  November 2011 Published  March 2012

The basic model for incompressible two-phase flows with phase transitions is derived from basic principles and shown to be thermodynamically consistent in the sense that the total energy is conserved and the total entropy is nondecreasing. The local well-posedness of such problems is proved by means of the technique of maximal $L_p$-regularity in the case of equal densities. This way we obtain a local semiflow on a well-defined nonlinear state manifold. The equilibria of the system in absence of external forces are identified and it is shown that the negative total entropy is a strict Ljapunov functional for the system. If a solution does not develop singularities, it is proved that it exists globally in time, its orbit is relatively compact, and its limit set is nonempty and contained in the set of equilibria.
Citation: Jan Prüss, Yoshihiro Shibata, Senjo Shimizu, Gieri Simonett. On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities. Evolution Equations & Control Theory, 2012, 1 (1) : 171-194. doi: 10.3934/eect.2012.1.171
References:
[1]

D. Bothe, J. Prüss, $L_p$-theory for a class of non-Newtonian fluids,, SIAM J. Math. Anal., 39 (2007), 379.  doi: 10.1137/060663635.  Google Scholar

[2]

D. M. Anderson, P. Cermelli, E. Fried, M. E. Gurtin and G. B. McFadden, General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids,, J. Fluid Mech., 581 (2007), 323.  doi: 10.1017/S0022112007005587.  Google Scholar

[3]

E. DiBenedetto and A. Friedman, Conduction-convection problems with change of phase,, J. Differential Equations, 62 (1986), 129.   Google Scholar

[4]

E. DiBenedetto and M. O'Leary, Three-dimensional conduction-convection problems with change of phase,, Arch. Rational Mech. Anal., 123 (1993), 99.  doi: 10.1007/BF00695273.  Google Scholar

[5]

R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type,", AMS Memoirs, 788 (2003).   Google Scholar

[6]

R. Denk, M. Hieber and J. Prüss, Optimal $L^ p$-$L^ q$-estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[7]

K.-H. Hoffmann and V. N. Starovoitov, The Stefan problem with surface tension and convection in Stokes fluid,, Adv. Math. Sci. Appl., 8 (1998), 173.   Google Scholar

[8]

K.-H. Hoffmann and V. N. Starovoitov, Phase transitions of liquid-liquid type with convection,, Adv. Math. Sci. Appl., 8 (1998), 185.   Google Scholar

[9]

M. Ishii, "Thermo-Fluid Dynamics of Two-Phase Flow,", Collection de la Direction des Etudes et Recherches d'Electricte de France, (1975).   Google Scholar

[10]

M. Ishii and H. Takashi, "Thermo-Fluid Dynamics of Two-Phase Flow,", Springer, (2006).   Google Scholar

[11]

M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension,, Math. Annalen, ().   Google Scholar

[12]

Y. Kusaka, On a limit problem of the Stefan problem with surface tension in a viscous incompressible fluid flow,, Adv. Math. Sci. Appl., 12 (2002), 665.   Google Scholar

[13]

Y. Kusaka and A. Tani, On the classical solvability of the Stefan problem in a viscous incompressible fluid flow,, SIAM J. Math. Anal., 30 (1999), 584.  doi: 10.1137/S0036141098334936.  Google Scholar

[14]

Y. Kusaka and A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow,, Math. Models Methods Appl. Sci., 12 (2002), 365.  doi: 10.1142/S0218202502001696.  Google Scholar

[15]

M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions,, Math. Nachr., ().   Google Scholar

[16]

J. Prüss, Maximal regularity for evolution equations in $L_p$-spacess,, Conf. Sem. Mat. Univ. Bari, 285 (2003), 1.   Google Scholar

[17]

J. Prüss and S. Shimizu, Incompressible two-phase flows with phase transition: Non-equal densities,, submitted., ().   Google Scholar

[18]

J. Prüss and G. Simonett, Maximal regularity for evolution equations in weighted $L_p$-spaces,, Archiv Math., 82 (2004), 415.   Google Scholar

[19]

J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675.  doi: 10.1137/070700632.  Google Scholar

[20]

J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension,, Interfaces & Free Bound, 12 (2010), 311.   Google Scholar

[21]

J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension,, Progr. Nonlin. Diff. Eqns. Appl., 80 (2011), 507.   Google Scholar

[22]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, \arXiv{1101.3763}, ().   Google Scholar

[23]

Y. Shibata and S. Shimizu, Resolvent estimates and maximal regularity of the interface problem for the Stokes system in a bounded domain,, preprint, (2009).   Google Scholar

[24]

N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection,, Japan J. Mech., 21 (1995), 1.   Google Scholar

[25]

H. Triebel, "Theory of Function Spaces II,", Birkhäuser Verlag, (1992).   Google Scholar

show all references

References:
[1]

D. Bothe, J. Prüss, $L_p$-theory for a class of non-Newtonian fluids,, SIAM J. Math. Anal., 39 (2007), 379.  doi: 10.1137/060663635.  Google Scholar

[2]

D. M. Anderson, P. Cermelli, E. Fried, M. E. Gurtin and G. B. McFadden, General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids,, J. Fluid Mech., 581 (2007), 323.  doi: 10.1017/S0022112007005587.  Google Scholar

[3]

E. DiBenedetto and A. Friedman, Conduction-convection problems with change of phase,, J. Differential Equations, 62 (1986), 129.   Google Scholar

[4]

E. DiBenedetto and M. O'Leary, Three-dimensional conduction-convection problems with change of phase,, Arch. Rational Mech. Anal., 123 (1993), 99.  doi: 10.1007/BF00695273.  Google Scholar

[5]

R. Denk, M. Hieber and J. Prüss, "$\mathcal R$-boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type,", AMS Memoirs, 788 (2003).   Google Scholar

[6]

R. Denk, M. Hieber and J. Prüss, Optimal $L^ p$-$L^ q$-estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[7]

K.-H. Hoffmann and V. N. Starovoitov, The Stefan problem with surface tension and convection in Stokes fluid,, Adv. Math. Sci. Appl., 8 (1998), 173.   Google Scholar

[8]

K.-H. Hoffmann and V. N. Starovoitov, Phase transitions of liquid-liquid type with convection,, Adv. Math. Sci. Appl., 8 (1998), 185.   Google Scholar

[9]

M. Ishii, "Thermo-Fluid Dynamics of Two-Phase Flow,", Collection de la Direction des Etudes et Recherches d'Electricte de France, (1975).   Google Scholar

[10]

M. Ishii and H. Takashi, "Thermo-Fluid Dynamics of Two-Phase Flow,", Springer, (2006).   Google Scholar

[11]

M. Köhne, J. Prüss and M. Wilke, Qualitative behaviour of solutions for the two-phase Navier-Stokes equations with surface tension,, Math. Annalen, ().   Google Scholar

[12]

Y. Kusaka, On a limit problem of the Stefan problem with surface tension in a viscous incompressible fluid flow,, Adv. Math. Sci. Appl., 12 (2002), 665.   Google Scholar

[13]

Y. Kusaka and A. Tani, On the classical solvability of the Stefan problem in a viscous incompressible fluid flow,, SIAM J. Math. Anal., 30 (1999), 584.  doi: 10.1137/S0036141098334936.  Google Scholar

[14]

Y. Kusaka and A. Tani, Classical solvability of the two-phase Stefan problem in a viscous incompressible fluid flow,, Math. Models Methods Appl. Sci., 12 (2002), 365.  doi: 10.1142/S0218202502001696.  Google Scholar

[15]

M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions,, Math. Nachr., ().   Google Scholar

[16]

J. Prüss, Maximal regularity for evolution equations in $L_p$-spacess,, Conf. Sem. Mat. Univ. Bari, 285 (2003), 1.   Google Scholar

[17]

J. Prüss and S. Shimizu, Incompressible two-phase flows with phase transition: Non-equal densities,, submitted., ().   Google Scholar

[18]

J. Prüss and G. Simonett, Maximal regularity for evolution equations in weighted $L_p$-spaces,, Archiv Math., 82 (2004), 415.   Google Scholar

[19]

J. Prüss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675.  doi: 10.1137/070700632.  Google Scholar

[20]

J. Prüss and G. Simonett, On the two-phase Navier-Stokes equations with surface tension,, Interfaces & Free Bound, 12 (2010), 311.   Google Scholar

[21]

J. Prüss and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension,, Progr. Nonlin. Diff. Eqns. Appl., 80 (2011), 507.   Google Scholar

[22]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, \arXiv{1101.3763}, ().   Google Scholar

[23]

Y. Shibata and S. Shimizu, Resolvent estimates and maximal regularity of the interface problem for the Stokes system in a bounded domain,, preprint, (2009).   Google Scholar

[24]

N. Tanaka, Two-phase free boundary problem for viscous incompressible thermo-capillary convection,, Japan J. Mech., 21 (1995), 1.   Google Scholar

[25]

H. Triebel, "Theory of Function Spaces II,", Birkhäuser Verlag, (1992).   Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[5]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[12]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[13]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[14]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (17)

[Back to Top]