June  2012, 1(1): 195-215. doi: 10.3934/eect.2012.1.195

Hyperbolic Navier-Stokes equations I: Local well-posedness

1. 

Department of Mathematics, University of Konstanz, 78457 Konstanz, Germany

2. 

Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstraße 32, 64287 Darmstadt, Germany

Received  September 2011 Revised  December 2011 Published  March 2012

We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.
Citation: Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195
References:
[1]

R. A. Adams, "Sobolev Spaces,'', Pure Appl. Math., 65 (1975).   Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation,, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111.  doi: 10.1007/BF02845131.  Google Scholar

[4]

M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion,, II Nuovo Cimento B, 9 (1972).   Google Scholar

[5]

T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity,, Arch. Ration. Mech. Anal., 63 (1976), 273.   Google Scholar

[6]

D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'', Appl. Math. Sciences, 84 (1990).   Google Scholar

[7]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[8]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Ration. Mech. Anal., 58 (1975), 181.  doi: 10.1007/BF00280740.  Google Scholar

[9]

T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems,'', Lezioni Fermiane [Fermi Lectures], (1985).   Google Scholar

[10]

A. Majda, "Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,'', Appl. Math. Sci., 53 (1984).   Google Scholar

[11]

M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes,, in, 21 (2007), 65.   Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Applied Mathematical Sciences, 44 (1983).   Google Scholar

[13]

R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'', Aspects of Mathematics, E19 (1992).   Google Scholar

[14]

R. Racke, Thermoelasticity,, in, (2009), 315.   Google Scholar

[15]

A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'', Diploma thesis, (2011).   Google Scholar

[16]

R. Temam, "The Navier-Stokes Equations. Theory and Numerical Analysis,'', Revised edition, 2 (1979).   Google Scholar

[17]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'', North-Holland Mathematical Library, 18 (1978).   Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,'', Pure Appl. Math., 65 (1975).   Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation,, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111.  doi: 10.1007/BF02845131.  Google Scholar

[4]

M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion,, II Nuovo Cimento B, 9 (1972).   Google Scholar

[5]

T. J. R. Hughes, T. Kato and J. E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity,, Arch. Ration. Mech. Anal., 63 (1976), 273.   Google Scholar

[6]

D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'', Appl. Math. Sciences, 84 (1990).   Google Scholar

[7]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 25.   Google Scholar

[8]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems,, Arch. Ration. Mech. Anal., 58 (1975), 181.  doi: 10.1007/BF00280740.  Google Scholar

[9]

T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems,'', Lezioni Fermiane [Fermi Lectures], (1985).   Google Scholar

[10]

A. Majda, "Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables,'', Appl. Math. Sci., 53 (1984).   Google Scholar

[11]

M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes,, in, 21 (2007), 65.   Google Scholar

[12]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,'', Applied Mathematical Sciences, 44 (1983).   Google Scholar

[13]

R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'', Aspects of Mathematics, E19 (1992).   Google Scholar

[14]

R. Racke, Thermoelasticity,, in, (2009), 315.   Google Scholar

[15]

A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'', Diploma thesis, (2011).   Google Scholar

[16]

R. Temam, "The Navier-Stokes Equations. Theory and Numerical Analysis,'', Revised edition, 2 (1979).   Google Scholar

[17]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,'', North-Holland Mathematical Library, 18 (1978).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (128)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]