-
Previous Article
Hyperbolic Navier-Stokes equations II: Global existence of small solutions
- EECT Home
- This Issue
-
Next Article
On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities
Hyperbolic Navier-Stokes equations I: Local well-posedness
1. | Department of Mathematics, University of Konstanz, 78457 Konstanz, Germany |
2. | Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstraße 32, 64287 Darmstadt, Germany |
References:
[1] |
Pure Appl. Math., 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[2] |
G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().
|
[3] |
Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111-122.
doi: 10.1007/BF02845131. |
[4] |
II Nuovo Cimento B, 9 (1972). Google Scholar |
[5] |
Arch. Ration. Mech. Anal., 63 (1976), 273-294. |
[6] |
Appl. Math. Sciences, 84, Springer-Verlag, New York, 1990. |
[7] |
in "Spectral Theory and Differential Equations" (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jögens), Lecture Notes in Math., 448, Springer, Berlin, (1975), 25-70. |
[8] |
Arch. Ration. Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[9] |
Lezioni Fermiane [Fermi Lectures], Scuola Normale Superiore, Pisa, Accademia Nazionale dei Lincei, Rome, 1985. |
[10] |
Appl. Math. Sci., 53, Springer-Verlag, New York, 1984. |
[11] |
in "ESAIM: Proceedings," Vol. 21 (2007) [Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix], ESAIM Proc., 21, EDP Sci., Les Ulis, (2007), 65-87. |
[12] |
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[13] |
Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. |
[14] |
in "Handbook of Differential Equations. Evolutionary Equations," Vol. V (eds. C. M. Dafermos and M. Pokorný), Elsevier/North-Holland, Amsterdam, (2009), 315-420. |
[15] |
Diploma thesis, University of Konstanz, 2011. Google Scholar |
[16] |
Revised edition, With an appendix by F. Thomasset, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[17] |
North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978. |
show all references
References:
[1] |
Pure Appl. Math., 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[2] |
G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().
|
[3] |
Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111-122.
doi: 10.1007/BF02845131. |
[4] |
II Nuovo Cimento B, 9 (1972). Google Scholar |
[5] |
Arch. Ration. Mech. Anal., 63 (1976), 273-294. |
[6] |
Appl. Math. Sciences, 84, Springer-Verlag, New York, 1990. |
[7] |
in "Spectral Theory and Differential Equations" (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jögens), Lecture Notes in Math., 448, Springer, Berlin, (1975), 25-70. |
[8] |
Arch. Ration. Mech. Anal., 58 (1975), 181-205.
doi: 10.1007/BF00280740. |
[9] |
Lezioni Fermiane [Fermi Lectures], Scuola Normale Superiore, Pisa, Accademia Nazionale dei Lincei, Rome, 1985. |
[10] |
Appl. Math. Sci., 53, Springer-Verlag, New York, 1984. |
[11] |
in "ESAIM: Proceedings," Vol. 21 (2007) [Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix], ESAIM Proc., 21, EDP Sci., Les Ulis, (2007), 65-87. |
[12] |
Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[13] |
Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. |
[14] |
in "Handbook of Differential Equations. Evolutionary Equations," Vol. V (eds. C. M. Dafermos and M. Pokorný), Elsevier/North-Holland, Amsterdam, (2009), 315-420. |
[15] |
Diploma thesis, University of Konstanz, 2011. Google Scholar |
[16] |
Revised edition, With an appendix by F. Thomasset, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[17] |
North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978. |
[1] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[2] |
Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022 |
[3] |
Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019 |
[4] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[5] |
Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393 |
[6] |
Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057 |
[7] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[8] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[9] |
Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021042 |
[10] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006 |
[11] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[12] |
Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005 |
[13] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[14] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[15] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021059 |
[16] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408 |
[17] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[18] |
Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018 |
[19] |
Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237 |
[20] |
Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]