June  2012, 1(1): 195-215. doi: 10.3934/eect.2012.1.195

Hyperbolic Navier-Stokes equations I: Local well-posedness

1. 

Department of Mathematics, University of Konstanz, 78457 Konstanz, Germany

2. 

Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstraße 32, 64287 Darmstadt, Germany

Received  September 2011 Revised  December 2011 Published  March 2012

We replace a Fourier type law by a Cattaneo type law in the derivation of the fundamental equations of fluid mechanics. This leads to hyperbolicly perturbed quasilinear Navier-Stokes equations. For this problem the standard approach by means of quasilinear symmetric hyperbolic systems seems to fail by the fact that finite propagation speed might not be expected. Therefore a somewhat different approach via viscosity solutions is developed in order to prove higher regularity energy estimates for the linearized system. Surprisingly, this method yields stronger results than previous methods, by the fact that we can relax the regularity assumptions on the coefficients to a minimum. This leads to a short and elegant proof of a local-in-time existence result for the corresponding first order quasilinear system, hence also for the original hyperbolicly perturbed Navier-Stokes equations.
Citation: Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195
References:
[1]

Pure Appl. Math., 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.  Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111-122. doi: 10.1007/BF02845131.  Google Scholar

[4]

II Nuovo Cimento B, 9 (1972). Google Scholar

[5]

Arch. Ration. Mech. Anal., 63 (1976), 273-294.  Google Scholar

[6]

Appl. Math. Sciences, 84, Springer-Verlag, New York, 1990.  Google Scholar

[7]

in "Spectral Theory and Differential Equations" (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jögens), Lecture Notes in Math., 448, Springer, Berlin, (1975), 25-70.  Google Scholar

[8]

Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.  Google Scholar

[9]

Lezioni Fermiane [Fermi Lectures], Scuola Normale Superiore, Pisa, Accademia Nazionale dei Lincei, Rome, 1985.  Google Scholar

[10]

Appl. Math. Sci., 53, Springer-Verlag, New York, 1984.  Google Scholar

[11]

in "ESAIM: Proceedings," Vol. 21 (2007) [Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix], ESAIM Proc., 21, EDP Sci., Les Ulis, (2007), 65-87.  Google Scholar

[12]

Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.  Google Scholar

[13]

Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992.  Google Scholar

[14]

in "Handbook of Differential Equations. Evolutionary Equations," Vol. V (eds. C. M. Dafermos and M. Pokorný), Elsevier/North-Holland, Amsterdam, (2009), 315-420.  Google Scholar

[15]

Diploma thesis, University of Konstanz, 2011. Google Scholar

[16]

Revised edition, With an appendix by F. Thomasset, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[17]

North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

show all references

References:
[1]

Pure Appl. Math., 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.  Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111-122. doi: 10.1007/BF02845131.  Google Scholar

[4]

II Nuovo Cimento B, 9 (1972). Google Scholar

[5]

Arch. Ration. Mech. Anal., 63 (1976), 273-294.  Google Scholar

[6]

Appl. Math. Sciences, 84, Springer-Verlag, New York, 1990.  Google Scholar

[7]

in "Spectral Theory and Differential Equations" (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jögens), Lecture Notes in Math., 448, Springer, Berlin, (1975), 25-70.  Google Scholar

[8]

Arch. Ration. Mech. Anal., 58 (1975), 181-205. doi: 10.1007/BF00280740.  Google Scholar

[9]

Lezioni Fermiane [Fermi Lectures], Scuola Normale Superiore, Pisa, Accademia Nazionale dei Lincei, Rome, 1985.  Google Scholar

[10]

Appl. Math. Sci., 53, Springer-Verlag, New York, 1984.  Google Scholar

[11]

in "ESAIM: Proceedings," Vol. 21 (2007) [Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix], ESAIM Proc., 21, EDP Sci., Les Ulis, (2007), 65-87.  Google Scholar

[12]

Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.  Google Scholar

[13]

Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992.  Google Scholar

[14]

in "Handbook of Differential Equations. Evolutionary Equations," Vol. V (eds. C. M. Dafermos and M. Pokorný), Elsevier/North-Holland, Amsterdam, (2009), 315-420.  Google Scholar

[15]

Diploma thesis, University of Konstanz, 2011. Google Scholar

[16]

Revised edition, With an appendix by F. Thomasset, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979.  Google Scholar

[17]

North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam-New York, 1978.  Google Scholar

[1]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[2]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[3]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[4]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[5]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[6]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[7]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[9]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[10]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[11]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[12]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[13]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[14]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[15]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[16]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[17]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[18]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[19]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[20]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (203)
  • HTML views (0)
  • Cited by (22)

Other articles
by authors

[Back to Top]