June  2012, 1(1): 217-234. doi: 10.3934/eect.2012.1.217

Hyperbolic Navier-Stokes equations II: Global existence of small solutions

1. 

Department of Mathematics, University of Konstanz, 78457 Konstanz

2. 

Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstraße 32, 64287 Darmstadt

Received  September 2011 Revised  December 2011 Published  March 2012

We consider a hyperbolicly perturbed Navier-Stokes initial value problem in ${\mathbb R}^n$, $n=2,3$, arising from using a Cattaneo type relation instead of a Fourier type one in the constitutive equations. The resulting system is an essentially hyperbolic one with quasilinear nonlinearities. The global existence of smooth solutions for small data is proved, and relations to the classical Navier-Stokes systems are discussed.
Citation: Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217
References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure Appl. Math., 65 (1975).   Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1.   Google Scholar

[4]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,'', With a preface by Yves Meyer, (1995).   Google Scholar

[5]

B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation,, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111.  doi: 10.1007/BF02845131.  Google Scholar

[6]

M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion,, II Nuovo Cimento B, 9 (1972).   Google Scholar

[7]

P. Constantin and C. Foias, "Navier-Stokes Equations,'', Chicago Lectures in Mathematics, (1988).   Google Scholar

[8]

M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics,, Appl. Math. Letters, 22 (2009), 1374.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Rational Mech. Anal., 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[10]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109.   Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,'', 2nd edition, (2011).   Google Scholar

[12]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data,, Indiana Univ. Math. J., 57 (2008), 2775.   Google Scholar

[13]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachrichten, 4 (1951), 213.  doi: 10.1002/mana.3210040121.  Google Scholar

[14]

D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'', Appl. Math. Sciences, 84 (1990).   Google Scholar

[15]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Second English edition, (1969).   Google Scholar

[16]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[17]

A. Mahalov and B. Nicolaenko, Global solubility of the three-dimensional Navier-Stokes equations with uniformly large vorticity,, Russ. Math. Surveys, 58 (2003), 287.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[18]

A. Mahalov, E. S. Titi and S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 112 (1990), 193.  doi: 10.1007/BF00381234.  Google Scholar

[19]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS, 12 (): 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[20]

M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes,, in, 21 (2007), 65.   Google Scholar

[21]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, Nonlinear Analysis, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[22]

G. Ponce and R. Racke, Global existence of small solutions to the initial value problem for nonlinear thermoelasticity,, J. Differential Equations, 87 (1990), 70.   Google Scholar

[23]

G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3d Navier-Stokes equations,, Commun. Math. Phys., 159 (1994), 329.   Google Scholar

[24]

R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators,, Arch. Mech., 63 (2011), 429.   Google Scholar

[25]

R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'', Aspects of Mathematics, E19 (1992).   Google Scholar

[26]

R. Racke, Thermoelasticity,, in, (2009), 315.   Google Scholar

[27]

R. Racke and J. Saal, Hyperbolic Navier-Stokes equations I: Local well-posedness,, Evolution Equations and Control Theory, ().   Google Scholar

[28]

A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'', Diploma thesis, (2011).   Google Scholar

[29]

T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations,, Arch. Rational Mech. Anal., 86 (1984), 369.  doi: 10.1007/BF00280033.  Google Scholar

[30]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'', Revised edition, 2 (1979).   Google Scholar

[31]

M .R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[32]

W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,'', Aspects of Mathematics, E8 (1985).   Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure Appl. Math., 65 (1975).   Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1.   Google Scholar

[4]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,'', With a preface by Yves Meyer, (1995).   Google Scholar

[5]

B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation,, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111.  doi: 10.1007/BF02845131.  Google Scholar

[6]

M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion,, II Nuovo Cimento B, 9 (1972).   Google Scholar

[7]

P. Constantin and C. Foias, "Navier-Stokes Equations,'', Chicago Lectures in Mathematics, (1988).   Google Scholar

[8]

M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics,, Appl. Math. Letters, 22 (2009), 1374.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Rational Mech. Anal., 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[10]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109.   Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,'', 2nd edition, (2011).   Google Scholar

[12]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data,, Indiana Univ. Math. J., 57 (2008), 2775.   Google Scholar

[13]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachrichten, 4 (1951), 213.  doi: 10.1002/mana.3210040121.  Google Scholar

[14]

D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'', Appl. Math. Sciences, 84 (1990).   Google Scholar

[15]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Second English edition, (1969).   Google Scholar

[16]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[17]

A. Mahalov and B. Nicolaenko, Global solubility of the three-dimensional Navier-Stokes equations with uniformly large vorticity,, Russ. Math. Surveys, 58 (2003), 287.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[18]

A. Mahalov, E. S. Titi and S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 112 (1990), 193.  doi: 10.1007/BF00381234.  Google Scholar

[19]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS, 12 (): 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[20]

M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes,, in, 21 (2007), 65.   Google Scholar

[21]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, Nonlinear Analysis, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[22]

G. Ponce and R. Racke, Global existence of small solutions to the initial value problem for nonlinear thermoelasticity,, J. Differential Equations, 87 (1990), 70.   Google Scholar

[23]

G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3d Navier-Stokes equations,, Commun. Math. Phys., 159 (1994), 329.   Google Scholar

[24]

R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators,, Arch. Mech., 63 (2011), 429.   Google Scholar

[25]

R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'', Aspects of Mathematics, E19 (1992).   Google Scholar

[26]

R. Racke, Thermoelasticity,, in, (2009), 315.   Google Scholar

[27]

R. Racke and J. Saal, Hyperbolic Navier-Stokes equations I: Local well-posedness,, Evolution Equations and Control Theory, ().   Google Scholar

[28]

A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'', Diploma thesis, (2011).   Google Scholar

[29]

T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations,, Arch. Rational Mech. Anal., 86 (1984), 369.  doi: 10.1007/BF00280033.  Google Scholar

[30]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'', Revised edition, 2 (1979).   Google Scholar

[31]

M .R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[32]

W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,'', Aspects of Mathematics, E8 (1985).   Google Scholar

[1]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[4]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[5]

Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497

[6]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[7]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[8]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[9]

Ruizhao Zi. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6437-6470. doi: 10.3934/dcds.2017279

[10]

Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255

[11]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[12]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[13]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[14]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[15]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[16]

Alain Miranville. Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1971-1987. doi: 10.3934/cpaa.2014.13.1971

[17]

Ahmad Makki, Alain Miranville, Georges Sadaka. On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1341-1365. doi: 10.3934/dcdsb.2019019

[18]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[19]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[20]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]