Citation: |
[1] |
R. A. Adams, "Sobolev Spaces," Pure Appl. Math., 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[2] |
G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids, Electronic J. Differential Equations, 2009, 16 pp. |
[3] |
A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J., 50 (2001), 1-35. |
[4] |
M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,'' With a preface by Yves Meyer, Diderot Editeur, Paris, 1995. |
[5] |
B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111-122.doi: 10.1007/BF02845131. |
[6] |
M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion, II Nuovo Cimento B, 9 (1972). |
[7] |
P. Constantin and C. Foias, "Navier-Stokes Equations,'' Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, IL, 1988. |
[8] |
M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Letters, 22 (2009), 1374-1379.doi: 10.1016/j.aml.2009.03.010. |
[9] |
H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.doi: 10.1007/s00205-009-0220-2. |
[10] |
H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, Sect I, 13 (1966), 109-124. |
[11] |
G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,'' 2nd edition, Springer Monographs in Mathematics, Springer, New York, 2011. |
[12] |
Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J., 57 (2008), 2775-2791. |
[13] |
E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachrichten, 4 (1951), 213-231.doi: 10.1002/mana.3210040121. |
[14] |
D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'' Appl. Math. Sciences, 84, Springer-Verlag, New York, 1990. |
[15] |
O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'' Second English edition, revised and enlarged, Mathematics and its Applications, Vol. 2 , Gordon and Breachm, Science Publishers, New York-London-Paris, 1969. |
[16] |
J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.doi: 10.1007/BF02547354. |
[17] |
A. Mahalov and B. Nicolaenko, Global solubility of the three-dimensional Navier-Stokes equations with uniformly large vorticity, Russ. Math. Surveys, 58 (2003), 287-318.doi: 10.1070/RM2003v058n02ABEH000611. |
[18] |
A. Mahalov, E. S. Titi and S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations, Arch. Rational Mech. Anal., 112 (1990), 193-222.doi: 10.1007/BF00381234. |
[19] |
A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations, Publ. RIMS, 12 (1976/77), 169-189. doi: 10.2977/prims/1195190962. |
[20] |
M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes, in "ESAIM: Proceedings," Vol. 21, (2007) [Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix], ESAIM Proc., 21, EDP Sci., Les Ulis, (2007), 65-87. |
[21] |
G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Analysis, 9 (1985), 399-418.doi: 10.1016/0362-546X(85)90001-X. |
[22] |
G. Ponce and R. Racke, Global existence of small solutions to the initial value problem for nonlinear thermoelasticity, J. Differential Equations, 87 (1990), 70-83. |
[23] |
G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3d Navier-Stokes equations, Commun. Math. Phys., 159 (1994), 329-341. |
[24] |
R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators, Arch. Mech., 63 (2011), 429-433. |
[25] |
R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'' Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. |
[26] |
R. Racke, Thermoelasticity, in "Handbook of Differential Equations: Evolutionary Equations," Vol. V (eds. C. M. Dafermos and M. Pokorný), Elsevier/North-Holland, Amesterdam, (2009), 315-420. |
[27] |
R. Racke and J. Saal, Hyperbolic Navier-Stokes equations I: Local well-posedness, Evolution Equations and Control Theory, to appear. |
[28] |
A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'' Diploma thesis, University of Konstanz, 2011. |
[29] |
T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations, Arch. Rational Mech. Anal., 86 (1984), 369-381.doi: 10.1007/BF00280033. |
[30] |
R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'' Revised edition, With an appendix by F. Thomasset, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York, 1979. |
[31] |
M .R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space, J. Appl. Math. Mech., 32 (1968), 52-61.doi: 10.1016/0021-8928(68)90147-0. |
[32] |
W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,'' Aspects of Mathematics, E8, Friedr. Vieweg & Sohn, Braunschweig, 1985. |