June  2012, 1(1): 217-234. doi: 10.3934/eect.2012.1.217

Hyperbolic Navier-Stokes equations II: Global existence of small solutions

1. 

Department of Mathematics, University of Konstanz, 78457 Konstanz

2. 

Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstraße 32, 64287 Darmstadt

Received  September 2011 Revised  December 2011 Published  March 2012

We consider a hyperbolicly perturbed Navier-Stokes initial value problem in ${\mathbb R}^n$, $n=2,3$, arising from using a Cattaneo type relation instead of a Fourier type one in the constitutive equations. The resulting system is an essentially hyperbolic one with quasilinear nonlinearities. The global existence of smooth solutions for small data is proved, and relations to the classical Navier-Stokes systems are discussed.
Citation: Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217
References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure Appl. Math., 65 (1975).   Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1.   Google Scholar

[4]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,'', With a preface by Yves Meyer, (1995).   Google Scholar

[5]

B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation,, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111.  doi: 10.1007/BF02845131.  Google Scholar

[6]

M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion,, II Nuovo Cimento B, 9 (1972).   Google Scholar

[7]

P. Constantin and C. Foias, "Navier-Stokes Equations,'', Chicago Lectures in Mathematics, (1988).   Google Scholar

[8]

M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics,, Appl. Math. Letters, 22 (2009), 1374.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Rational Mech. Anal., 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[10]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109.   Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,'', 2nd edition, (2011).   Google Scholar

[12]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data,, Indiana Univ. Math. J., 57 (2008), 2775.   Google Scholar

[13]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachrichten, 4 (1951), 213.  doi: 10.1002/mana.3210040121.  Google Scholar

[14]

D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'', Appl. Math. Sciences, 84 (1990).   Google Scholar

[15]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Second English edition, (1969).   Google Scholar

[16]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[17]

A. Mahalov and B. Nicolaenko, Global solubility of the three-dimensional Navier-Stokes equations with uniformly large vorticity,, Russ. Math. Surveys, 58 (2003), 287.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[18]

A. Mahalov, E. S. Titi and S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 112 (1990), 193.  doi: 10.1007/BF00381234.  Google Scholar

[19]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS, 12 (): 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[20]

M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes,, in, 21 (2007), 65.   Google Scholar

[21]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, Nonlinear Analysis, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[22]

G. Ponce and R. Racke, Global existence of small solutions to the initial value problem for nonlinear thermoelasticity,, J. Differential Equations, 87 (1990), 70.   Google Scholar

[23]

G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3d Navier-Stokes equations,, Commun. Math. Phys., 159 (1994), 329.   Google Scholar

[24]

R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators,, Arch. Mech., 63 (2011), 429.   Google Scholar

[25]

R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'', Aspects of Mathematics, E19 (1992).   Google Scholar

[26]

R. Racke, Thermoelasticity,, in, (2009), 315.   Google Scholar

[27]

R. Racke and J. Saal, Hyperbolic Navier-Stokes equations I: Local well-posedness,, Evolution Equations and Control Theory, ().   Google Scholar

[28]

A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'', Diploma thesis, (2011).   Google Scholar

[29]

T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations,, Arch. Rational Mech. Anal., 86 (1984), 369.  doi: 10.1007/BF00280033.  Google Scholar

[30]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'', Revised edition, 2 (1979).   Google Scholar

[31]

M .R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[32]

W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,'', Aspects of Mathematics, E8 (1985).   Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Pure Appl. Math., 65 (1975).   Google Scholar

[2]

G. M. de Araújo, S. B. de Menezes and A. O. Marinho, Existence of solutions for an Oldroyd model of viscoelastic fluids,, Electronic J. Differential Equations, 2009 ().   Google Scholar

[3]

A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity,, Indiana Univ. Math. J., 50 (2001), 1.   Google Scholar

[4]

M. Cannone, "Ondelettes, Paraproduits et Navier-Stokes,'', With a preface by Yves Meyer, (1995).   Google Scholar

[5]

B. Carbonaro and F. Rosso, Some remarks on a modified fluid dynamics equation,, Rendiconti Del Circolo Matematico Di Palermo (2), 30 (1981), 111.  doi: 10.1007/BF02845131.  Google Scholar

[6]

M. Carrassi and A. Morro, A modified Navier-Stokes equation and its consequences on sound dispersion,, II Nuovo Cimento B, 9 (1972).   Google Scholar

[7]

P. Constantin and C. Foias, "Navier-Stokes Equations,'', Chicago Lectures in Mathematics, (1988).   Google Scholar

[8]

M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics,, Appl. Math. Letters, 22 (2009), 1374.  doi: 10.1016/j.aml.2009.03.010.  Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law,, Arch. Rational Mech. Anal., 194 (2009), 221.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[10]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo, 13 (1966), 109.   Google Scholar

[11]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,'', 2nd edition, (2011).   Google Scholar

[12]

Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data,, Indiana Univ. Math. J., 57 (2008), 2775.   Google Scholar

[13]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachrichten, 4 (1951), 213.  doi: 10.1002/mana.3210040121.  Google Scholar

[14]

D. D. Joseph, "Fluid Dynamics of Viscoleastic Liquids,'', Appl. Math. Sciences, 84 (1990).   Google Scholar

[15]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Second English edition, (1969).   Google Scholar

[16]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[17]

A. Mahalov and B. Nicolaenko, Global solubility of the three-dimensional Navier-Stokes equations with uniformly large vorticity,, Russ. Math. Surveys, 58 (2003), 287.  doi: 10.1070/RM2003v058n02ABEH000611.  Google Scholar

[18]

A. Mahalov, E. S. Titi and S. Leibovich, Invariant helical subspaces for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 112 (1990), 193.  doi: 10.1007/BF00381234.  Google Scholar

[19]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS, 12 (): 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[20]

M. Paicu and G. Raugel, Une perturbation hyperbolique des équations de Navier-Stokes,, in, 21 (2007), 65.   Google Scholar

[21]

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations,, Nonlinear Analysis, 9 (1985), 399.  doi: 10.1016/0362-546X(85)90001-X.  Google Scholar

[22]

G. Ponce and R. Racke, Global existence of small solutions to the initial value problem for nonlinear thermoelasticity,, J. Differential Equations, 87 (1990), 70.   Google Scholar

[23]

G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large solutions to the 3d Navier-Stokes equations,, Commun. Math. Phys., 159 (1994), 329.   Google Scholar

[24]

R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators,, Arch. Mech., 63 (2011), 429.   Google Scholar

[25]

R. Racke, "Lectures on Nonlinear Evolution Equations. Initial Value Problems,'', Aspects of Mathematics, E19 (1992).   Google Scholar

[26]

R. Racke, Thermoelasticity,, in, (2009), 315.   Google Scholar

[27]

R. Racke and J. Saal, Hyperbolic Navier-Stokes equations I: Local well-posedness,, Evolution Equations and Control Theory, ().   Google Scholar

[28]

A. Schöwe, "Langzeitasymptotik der Hyperbolischen Navier-Stokes Gleichung im $\mathbb R^3$,'', Diploma thesis, (2011).   Google Scholar

[29]

T. C. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equations,, Arch. Rational Mech. Anal., 86 (1984), 369.  doi: 10.1007/BF00280033.  Google Scholar

[30]

R. Temam, "Navier-Stokes Equations. Theory and Numerical Analysis,'', Revised edition, 2 (1979).   Google Scholar

[31]

M .R. Ukhovskii and V. I. Iudovich, Axially symmetric flows of ideal and viscous fluids filling the whole space,, J. Appl. Math. Mech., 32 (1968), 52.  doi: 10.1016/0021-8928(68)90147-0.  Google Scholar

[32]

W. von Wahl, "The Equations of Navier-Stokes and Abstract Parabolic Equations,'', Aspects of Mathematics, E8 (1985).   Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[6]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[7]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[10]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[11]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[12]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[13]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[14]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[15]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[16]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[17]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]