
Previous Article
Memory relaxation of type III thermoelastic extensible beams and Berger plates
 EECT Home
 This Issue
 Next Article
Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach
1.  EECS, University of Ottawa, Ottawa, Ontario, Canada 
References:
[1] 
N. U. Ahmed, "Semigroup Theory with Applications to Systems and Control," Pitman Research Notes in Mathematics Series, 246, Longman Scientific and Technical, U. K; Copublished with JohnWiely & Sons, Inc., New York, 1991. 
[2] 
N. U. Ahmed and X. Xiang, Differential inclusions on banach spaces and their optimal control, Nonlinear Funct. Anal.& Appl., 8 (2003), 461488. 
[3] 
N. U. Ahmed, Optimal relaxed controls for systems governed by impulsive differential inclusions, Nonlinear Funct. Anal.& Appl., 10 (2005), 427460. 
[4] 
N. U. Ahmed and C. D. Charalambous, Minimax games for stochastic systems subject to relative entropy uncertainty: Applications to SDE's on Hilbert spaces, J. Mathematics of Control, Signals and Systems, 19 (2007), 6591. doi: 10.1007/s004980060009x. 
[5] 
N. U. Ahmed, Optimal output feedback boundary control for systems governed by semilinear parabolic inclusions: uncertain systems, Advances in Nonlinear Variational Inequalities, 11 (2008), 6179. 
[6] 
N. U. Ahmed and Suruz Miah, Optimal feedback control law for a class of partially observed dynamic systems: a minmax problem, Dynamic Systems and Applications, 20 (2011), 149168. 
[7] 
N. U. Ahmed and K. L. Teo, "Optimal Control of Distributed Parameter Systems," North Holland, New York, Oxford, 1981. 
[8] 
J. P. Aubin and H. Frankowska, "SetValued Analysis," Berkhauser, Boston, 1990. 
[9] 
L. Cesari, "Optimization Theory and Applications," SpringerVerlag, 1983. doi: 10.1007/9781461381655. 
[10] 
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, 1992. doi: 10.1017/CBO9780511666223. 
[11] 
H. O. Fattorini, "Infinite Dimensional optimization and Control Theory," Encyclopedia of mathematics and its applications, 62, Cambridge University Press, 1999. 
[12] 
S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis," Kluwer Academic Publishers, Dordrecht, Boston, London, vol 1, 1997. 
[13] 
F. Mayoral, Compact sets of compact operators in absence of $l_1$, Proc. Am. Math. Soc., 129 (2001),7982. doi: 10.1090/S000299390006007X. 
[14] 
E. Serrano, C. Pineiro and J. M. Delgado, Equicompact sets of operators defined on Banach spaces, Proc. Am. Math. Soc., 134 (2005), 689695. doi: 10.1090/S0002993905083383. 
[15] 
E. Zeidler, "Nonlinear Functional Analysis and its Applications," Fixed Point Theorems, SpringerVerlag, New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest, Vol. 1, 1986. 
show all references
References:
[1] 
N. U. Ahmed, "Semigroup Theory with Applications to Systems and Control," Pitman Research Notes in Mathematics Series, 246, Longman Scientific and Technical, U. K; Copublished with JohnWiely & Sons, Inc., New York, 1991. 
[2] 
N. U. Ahmed and X. Xiang, Differential inclusions on banach spaces and their optimal control, Nonlinear Funct. Anal.& Appl., 8 (2003), 461488. 
[3] 
N. U. Ahmed, Optimal relaxed controls for systems governed by impulsive differential inclusions, Nonlinear Funct. Anal.& Appl., 10 (2005), 427460. 
[4] 
N. U. Ahmed and C. D. Charalambous, Minimax games for stochastic systems subject to relative entropy uncertainty: Applications to SDE's on Hilbert spaces, J. Mathematics of Control, Signals and Systems, 19 (2007), 6591. doi: 10.1007/s004980060009x. 
[5] 
N. U. Ahmed, Optimal output feedback boundary control for systems governed by semilinear parabolic inclusions: uncertain systems, Advances in Nonlinear Variational Inequalities, 11 (2008), 6179. 
[6] 
N. U. Ahmed and Suruz Miah, Optimal feedback control law for a class of partially observed dynamic systems: a minmax problem, Dynamic Systems and Applications, 20 (2011), 149168. 
[7] 
N. U. Ahmed and K. L. Teo, "Optimal Control of Distributed Parameter Systems," North Holland, New York, Oxford, 1981. 
[8] 
J. P. Aubin and H. Frankowska, "SetValued Analysis," Berkhauser, Boston, 1990. 
[9] 
L. Cesari, "Optimization Theory and Applications," SpringerVerlag, 1983. doi: 10.1007/9781461381655. 
[10] 
G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, 1992. doi: 10.1017/CBO9780511666223. 
[11] 
H. O. Fattorini, "Infinite Dimensional optimization and Control Theory," Encyclopedia of mathematics and its applications, 62, Cambridge University Press, 1999. 
[12] 
S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis," Kluwer Academic Publishers, Dordrecht, Boston, London, vol 1, 1997. 
[13] 
F. Mayoral, Compact sets of compact operators in absence of $l_1$, Proc. Am. Math. Soc., 129 (2001),7982. doi: 10.1090/S000299390006007X. 
[14] 
E. Serrano, C. Pineiro and J. M. Delgado, Equicompact sets of operators defined on Banach spaces, Proc. Am. Math. Soc., 134 (2005), 689695. doi: 10.1090/S0002993905083383. 
[15] 
E. Zeidler, "Nonlinear Functional Analysis and its Applications," Fixed Point Theorems, SpringerVerlag, New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest, Vol. 1, 1986. 
[1] 
Jiawei Chen, Shengjie Li, JenChih Yao. Vectorvalued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial and Management Optimization, 2020, 16 (2) : 707724. doi: 10.3934/jimo.2018174 
[2] 
Qian Liu, Xinmin Yang, Heung Wing Joseph Lee. On saddle points of a class of augmented lagrangian functions. Journal of Industrial and Management Optimization, 2007, 3 (4) : 693700. doi: 10.3934/jimo.2007.3.693 
[3] 
Mariusz Michta. Stochastic inclusions with noncontinuous setvalued operators. Conference Publications, 2009, 2009 (Special) : 548557. doi: 10.3934/proc.2009.2009.548 
[4] 
Tyrone E. Duncan. Some partially observed multiagent linear exponential quadratic stochastic differential games. Evolution Equations and Control Theory, 2018, 7 (4) : 587597. doi: 10.3934/eect.2018028 
[5] 
Volodymyr Pichkur. On practical stability of differential inclusions using Lyapunov functions. Discrete and Continuous Dynamical Systems  B, 2017, 22 (5) : 19771986. doi: 10.3934/dcdsb.2017116 
[6] 
Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed nonzero sum differential game of forwardbackward stochastic differential equations and its application in finance. Mathematical Control and Related Fields, 2019, 9 (2) : 257276. doi: 10.3934/mcrf.2019013 
[7] 
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for SchrödingerPoisson systems. Communications on Pure and Applied Analysis, 2021, 20 (4) : 17371754. doi: 10.3934/cpaa.2021039 
[8] 
Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603619. doi: 10.3934/eect.2019028 
[9] 
Yury Arlinskiĭ, Eduard Tsekanovskiĭ. Constant Junitary factor and operatorvalued transfer functions. Conference Publications, 2003, 2003 (Special) : 4856. doi: 10.3934/proc.2003.2003.48 
[10] 
Qing Yang, Shiji Song, Cheng Wu. Inventory policies for a partially observed supply capacity model. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1330. doi: 10.3934/jimo.2013.9.13 
[11] 
Xiaolong Li, Katsutoshi Shinohara. On superexponential divergence of periodic points for partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 17071729. doi: 10.3934/dcds.2021169 
[12] 
Aihua Fan, Lingmin Liao, Jacques Peyrière. Generic points in systems of specification and Banach valued Birkhoff ergodic average. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 11031128. doi: 10.3934/dcds.2008.21.1103 
[13] 
Kody Law, Abhishek Shukla, Andrew Stuart. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 10611078. doi: 10.3934/dcds.2014.34.1061 
[14] 
Tomasz Kapela, Piotr Zgliczyński. A Lohnertype algorithm for control systems and ordinary differential inclusions. Discrete and Continuous Dynamical Systems  B, 2009, 11 (2) : 365385. doi: 10.3934/dcdsb.2009.11.365 
[15] 
Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure and Applied Analysis, 2018, 17 (6) : 24792493. doi: 10.3934/cpaa.2018118 
[16] 
Olaf Klein. On the representation of hysteresis operators acting on vectorvalued, leftcontinuous and piecewise monotaffine and continuous functions. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 25912614. doi: 10.3934/dcds.2015.35.2591 
[17] 
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operatorvalued Riccati differential equation with semidefinite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315342. doi: 10.3934/eect.2019017 
[18] 
Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618622. doi: 10.3934/proc.2003.2003.618 
[19] 
Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete and Continuous Dynamical Systems  B, 2010, 14 (2) : 629654. doi: 10.3934/dcdsb.2010.14.629 
[20] 
Guoshan Zhang, Shiwei Wang, Yiming Wang, Wanquan Liu. LSSVM approximate solution for affine nonlinear systems with partially unknown functions. Journal of Industrial and Management Optimization, 2014, 10 (2) : 621636. doi: 10.3934/jimo.2014.10.621 
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]