December  2012, 1(2): 235-250. doi: 10.3934/eect.2012.1.235

Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach

1. 

EECS, University of Ottawa, Ottawa, Ontario, Canada

Received  May 2012 Revised  June 2012 Published  October 2012

In this paper we consider a class of partially observed semilinear stochastic evolution equations on infinite dimensional Hilbert spaces subject to measurement uncertainty. We prove the existence of optimal feedback control law from a class of operator valued functions furnished with the Tychonoff product topology. This is an extension of our previous results for uncertain systems governed by deterministic differential equations on Banach spaces. Also we present a result on existence of optimal feedback control law for a class of uncertain stochastic systems modeled by differential inclusions.
Citation: N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235
References:
[1]

N. U. Ahmed, "Semigroup Theory with Applications to Systems and Control,", Pitman Research Notes in Mathematics Series, (1991).   Google Scholar

[2]

N. U. Ahmed and X. Xiang, Differential inclusions on banach spaces and their optimal control,, Nonlinear Funct. Anal.& Appl., 8 (2003), 461.   Google Scholar

[3]

N. U. Ahmed, Optimal relaxed controls for systems governed by impulsive differential inclusions,, Nonlinear Funct. Anal.& Appl., 10 (2005), 427.   Google Scholar

[4]

N. U. Ahmed and C. D. Charalambous, Minimax games for stochastic systems subject to relative entropy uncertainty: Applications to SDE's on Hilbert spaces,, J. Mathematics of Control, 19 (2007), 65.  doi: 10.1007/s00498-006-0009-x.  Google Scholar

[5]

N. U. Ahmed, Optimal output feedback boundary control for systems governed by semilinear parabolic inclusions: uncertain systems,, Advances in Nonlinear Variational Inequalities, 11 (2008), 61.   Google Scholar

[6]

N. U. Ahmed and Suruz Miah, Optimal feedback control law for a class of partially observed dynamic systems: a min-max problem,, Dynamic Systems and Applications, 20 (2011), 149.   Google Scholar

[7]

N. U. Ahmed and K. L. Teo, "Optimal Control of Distributed Parameter Systems,", North Holland, (1981).   Google Scholar

[8]

J. P. Aubin and H. Frankowska, "Set-Valued Analysis,", Berkhauser, (1990).   Google Scholar

[9]

L. Cesari, "Optimization Theory and Applications,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[10]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

H. O. Fattorini, "Infinite Dimensional optimization and Control Theory,", Encyclopedia of mathematics and its applications, (1999).   Google Scholar

[12]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis,", Kluwer Academic Publishers, (1997).   Google Scholar

[13]

F. Mayoral, Compact sets of compact operators in absence of $l_1$,, Proc. Am. Math. Soc., 129 (2001), 79.  doi: 10.1090/S0002-9939-00-06007-X.  Google Scholar

[14]

E. Serrano, C. Pineiro and J. M. Delgado, Equicompact sets of operators defined on Banach spaces,, Proc. Am. Math. Soc., 134 (2005), 689.  doi: 10.1090/S0002-9939-05-08338-3.  Google Scholar

[15]

E. Zeidler, "Nonlinear Functional Analysis and its Applications,", Fixed Point Theorems, (1986).   Google Scholar

show all references

References:
[1]

N. U. Ahmed, "Semigroup Theory with Applications to Systems and Control,", Pitman Research Notes in Mathematics Series, (1991).   Google Scholar

[2]

N. U. Ahmed and X. Xiang, Differential inclusions on banach spaces and their optimal control,, Nonlinear Funct. Anal.& Appl., 8 (2003), 461.   Google Scholar

[3]

N. U. Ahmed, Optimal relaxed controls for systems governed by impulsive differential inclusions,, Nonlinear Funct. Anal.& Appl., 10 (2005), 427.   Google Scholar

[4]

N. U. Ahmed and C. D. Charalambous, Minimax games for stochastic systems subject to relative entropy uncertainty: Applications to SDE's on Hilbert spaces,, J. Mathematics of Control, 19 (2007), 65.  doi: 10.1007/s00498-006-0009-x.  Google Scholar

[5]

N. U. Ahmed, Optimal output feedback boundary control for systems governed by semilinear parabolic inclusions: uncertain systems,, Advances in Nonlinear Variational Inequalities, 11 (2008), 61.   Google Scholar

[6]

N. U. Ahmed and Suruz Miah, Optimal feedback control law for a class of partially observed dynamic systems: a min-max problem,, Dynamic Systems and Applications, 20 (2011), 149.   Google Scholar

[7]

N. U. Ahmed and K. L. Teo, "Optimal Control of Distributed Parameter Systems,", North Holland, (1981).   Google Scholar

[8]

J. P. Aubin and H. Frankowska, "Set-Valued Analysis,", Berkhauser, (1990).   Google Scholar

[9]

L. Cesari, "Optimization Theory and Applications,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4613-8165-5.  Google Scholar

[10]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

H. O. Fattorini, "Infinite Dimensional optimization and Control Theory,", Encyclopedia of mathematics and its applications, (1999).   Google Scholar

[12]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis,", Kluwer Academic Publishers, (1997).   Google Scholar

[13]

F. Mayoral, Compact sets of compact operators in absence of $l_1$,, Proc. Am. Math. Soc., 129 (2001), 79.  doi: 10.1090/S0002-9939-00-06007-X.  Google Scholar

[14]

E. Serrano, C. Pineiro and J. M. Delgado, Equicompact sets of operators defined on Banach spaces,, Proc. Am. Math. Soc., 134 (2005), 689.  doi: 10.1090/S0002-9939-05-08338-3.  Google Scholar

[15]

E. Zeidler, "Nonlinear Functional Analysis and its Applications,", Fixed Point Theorems, (1986).   Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[8]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[9]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]