• Previous Article
    On the exponential stabilization of a thermo piezoelectric/piezomagnetic system
  • EECT Home
  • This Issue
  • Next Article
    Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems
December  2012, 1(2): 297-314. doi: 10.3934/eect.2012.1.297

On the 2D free boundary Euler equation

1. 

Department of Mathematics, University of Southern California, Los Angeles, CA 90089

2. 

Department of Mathematics, The Petroleum Institute, Abu Dhabi

Received  May 2012 Revised  July 2012 Published  October 2012

We provide a new simple proof of local-in-time existence of regular solutions to the Euler equation on a domain with a free moving boundary and without surface tension in 2 space dimensions. We prove the existence under the condition that the initial velocity belongs to the Sobolev space $H^{2.5+δ}$ where $\delta>0$ is arbitrary.
Citation: Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297
References:
[1]

T. Alazard, N. Burq and C. Zuily, On the water-wave equations with surface tension,, Duke Math. J., 158 (2011), 413.   Google Scholar

[2]

T. Alazard, N. Burq and C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools,, Journeés Équations aux Dérivées Partielles, (2011).   Google Scholar

[3]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves,, Comm. Pure Appl. Math., 58 (2005), 1287.   Google Scholar

[4]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of three-dimensional water waves,, Indiana Univ. Math. J., 58 (2009), 479.   Google Scholar

[5]

J. Thomas Beale, The initial value problem for the Navier-Stokes equations with a free surface,, Comm. Pure Appl. Math., 34 (1981), 359.   Google Scholar

[6]

J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,, Comm. Pure Appl. Math., 46 (1993), 1269.   Google Scholar

[7]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension,, J. Amer. Math. Soc., 20 (2007), 829.   Google Scholar

[8]

D. Coutand and S. Shkoller, A simple proof of well-posedness for the free-surface incompressible Euler equations,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 429.   Google Scholar

[9]

D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid,, Comm. Pure Appl. Math., 53 (2000), 1536.   Google Scholar

[10]

D. G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed,, Comm. Partial Differential Equations, 12 (1987), 1175.   Google Scholar

[11]

T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves,, Funkcial. Ekvac., 44 (2001), 219.   Google Scholar

[12]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.   Google Scholar

[13]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323.   Google Scholar

[14]

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, Discrete Contin. Dyn. Syst., 32 (2012), 1355.   Google Scholar

[15]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605.   Google Scholar

[16]

H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary,, Comm. Pure Appl. Math., 56 (2003), 153.   Google Scholar

[17]

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary,, Ann. of Math. (2), 162 (2005), 109.   Google Scholar

[18]

V. I. Nalimov, The Cauchy-Poisson problem,, Dinamika Splošn. Sredy no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, (1974), 104.   Google Scholar

[19]

M. Ogawa and A. Tani, Free boundary problem for an incompressible ideal fluid with surface tension,, Math. Models Methods Appl. Sci., 12 (2002), 1725.   Google Scholar

[20]

B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 753.   Google Scholar

[21]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation,, Comm. Pure Appl. Math., 61 (2008), 698.   Google Scholar

[22]

A. I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid,, Mat. Sb. (N.S.), 128(170) (1985), 82.   Google Scholar

[23]

A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface,, Arch. Rational Mech. Anal., 133 (1996), 299.   Google Scholar

[24]

T. Tao, Harmonic analysis,, , ().   Google Scholar

[25]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D,, Invent. Math., 130 (1997), 39.   Google Scholar

[26]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445.   Google Scholar

[27]

L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids,, J. Differential Equations, 248 (2010), 1044.   Google Scholar

[28]

H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth,, Publ. Res. Inst. Math. Sci., 18 (1982), 49.   Google Scholar

[29]

H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid,, J. Math. Kyoto Univ., 23 (1983), 649.   Google Scholar

[30]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations,, Comm. Pure Appl. Math., 61 (2008), 877.   Google Scholar

show all references

References:
[1]

T. Alazard, N. Burq and C. Zuily, On the water-wave equations with surface tension,, Duke Math. J., 158 (2011), 413.   Google Scholar

[2]

T. Alazard, N. Burq and C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools,, Journeés Équations aux Dérivées Partielles, (2011).   Google Scholar

[3]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves,, Comm. Pure Appl. Math., 58 (2005), 1287.   Google Scholar

[4]

D. M. Ambrose and N. Masmoudi, The zero surface tension limit of three-dimensional water waves,, Indiana Univ. Math. J., 58 (2009), 479.   Google Scholar

[5]

J. Thomas Beale, The initial value problem for the Navier-Stokes equations with a free surface,, Comm. Pure Appl. Math., 34 (1981), 359.   Google Scholar

[6]

J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium,, Comm. Pure Appl. Math., 46 (1993), 1269.   Google Scholar

[7]

D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension,, J. Amer. Math. Soc., 20 (2007), 829.   Google Scholar

[8]

D. Coutand and S. Shkoller, A simple proof of well-posedness for the free-surface incompressible Euler equations,, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 429.   Google Scholar

[9]

D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid,, Comm. Pure Appl. Math., 53 (2000), 1536.   Google Scholar

[10]

D. G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed,, Comm. Partial Differential Equations, 12 (1987), 1175.   Google Scholar

[11]

T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves,, Funkcial. Ekvac., 44 (2001), 219.   Google Scholar

[12]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891.   Google Scholar

[13]

C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation,, J. Amer. Math. Soc., 4 (1991), 323.   Google Scholar

[14]

I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem,, Discrete Contin. Dyn. Syst., 32 (2012), 1355.   Google Scholar

[15]

D. Lannes, Well-posedness of the water-waves equations,, J. Amer. Math. Soc., 18 (2005), 605.   Google Scholar

[16]

H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary,, Comm. Pure Appl. Math., 56 (2003), 153.   Google Scholar

[17]

H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary,, Ann. of Math. (2), 162 (2005), 109.   Google Scholar

[18]

V. I. Nalimov, The Cauchy-Poisson problem,, Dinamika Splošn. Sredy no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, (1974), 104.   Google Scholar

[19]

M. Ogawa and A. Tani, Free boundary problem for an incompressible ideal fluid with surface tension,, Math. Models Methods Appl. Sci., 12 (2002), 1725.   Google Scholar

[20]

B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 753.   Google Scholar

[21]

J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation,, Comm. Pure Appl. Math., 61 (2008), 698.   Google Scholar

[22]

A. I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid,, Mat. Sb. (N.S.), 128(170) (1985), 82.   Google Scholar

[23]

A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface,, Arch. Rational Mech. Anal., 133 (1996), 299.   Google Scholar

[24]

T. Tao, Harmonic analysis,, , ().   Google Scholar

[25]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D,, Invent. Math., 130 (1997), 39.   Google Scholar

[26]

S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D,, J. Amer. Math. Soc., 12 (1999), 445.   Google Scholar

[27]

L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids,, J. Differential Equations, 248 (2010), 1044.   Google Scholar

[28]

H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth,, Publ. Res. Inst. Math. Sci., 18 (1982), 49.   Google Scholar

[29]

H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid,, J. Math. Kyoto Univ., 23 (1983), 649.   Google Scholar

[30]

P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations,, Comm. Pure Appl. Math., 61 (2008), 877.   Google Scholar

[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[6]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[16]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[17]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[18]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[19]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]