\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the 2D free boundary Euler equation

Abstract Related Papers Cited by
  • We provide a new simple proof of local-in-time existence of regular solutions to the Euler equation on a domain with a free moving boundary and without surface tension in 2 space dimensions. We prove the existence under the condition that the initial velocity belongs to the Sobolev space $H^{2.5+δ}$ where $\delta>0$ is arbitrary.
    Mathematics Subject Classification: Primary: 35Q31, 74J15; Secondary: 35R37.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Alazard, N. Burq and C. Zuily, On the water-wave equations with surface tension, Duke Math. J., 158 (2011), 413-499.

    [2]

    T. Alazard, N. Burq and C. Zuily, Low regularity Cauchy theory for the water-waves problem: canals and swimming pools, Journeés Équations aux Dérivées Partielles, Biarritz 6 Juin-10 Juin (2011), Exposé no. III, p. 20.

    [3]

    D. M. Ambrose and N. Masmoudi, The zero surface tension limit of two-dimensional water waves, Comm. Pure Appl. Math., 58 (2005), 1287-1315.

    [4]

    D. M. Ambrose and N. Masmoudi, The zero surface tension limit of three-dimensional water waves, Indiana Univ. Math. J., 58 (2009), 479-521.

    [5]

    J. Thomas Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math., 34 (1981), 359-392.

    [6]

    J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Growth rates for the linearized motion of fluid interfaces away from equilibrium, Comm. Pure Appl. Math., 46 (1993), 1269-1301.

    [7]

    D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), 829-930.

    [8]

    D. Coutand and S. Shkoller, A simple proof of well-posedness for the free-surface incompressible Euler equations, Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 429-449.

    [9]

    D. Christodoulou and H. Lindblad, On the motion of the free surface of a liquid, Comm. Pure Appl. Math., 53 (2000), 1536-1602.

    [10]

    D. G. Ebin, The equations of motion of a perfect fluid with free boundary are not well posed, Comm. Partial Differential Equations, 12 (1987), 1175-1201.

    [11]

    T. Iguchi, Well-posedness of the initial value problem for capillary-gravity waves, Funkcial. Ekvac., 44 (2001), 219-241.

    [12]

    T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.

    [13]

    C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323-347.

    [14]

    I. Kukavica and A. Tuffaha, Solutions to a fluid-structure interaction free boundary problem, Discrete Contin. Dyn. Syst., 32 (2012), 1355-1389.

    [15]

    D. Lannes, Well-posedness of the water-waves equations, J. Amer. Math. Soc., 18 (2005), 605-654 (electronic).

    [16]

    H. Lindblad, Well-posedness for the linearized motion of an incompressible liquid with free surface boundary, Comm. Pure Appl. Math., 56 (2003), 153-197.

    [17]

    H. Lindblad, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. of Math. (2), 162 (2005), 109-194.

    [18]

    V. I. Nalimov, The Cauchy-Poisson problem, Dinamika Splošn. Sredy no. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami,(1974), 104-210, 254 .

    [19]

    M. Ogawa and A. Tani, Free boundary problem for an incompressible ideal fluid with surface tension, Math. Models Methods Appl. Sci., 12 (2002), 1725-1740.

    [20]

    B. Schweizer, On the three-dimensional Euler equations with a free boundary subject to surface tension, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 753-781.

    [21]

    J. Shatah and C. Zeng, Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008), 698-744.

    [22]

    A. I. Shnirelman, The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Mat. Sb. (N.S.), 128(170) (1985), 82-109, 144.

    [23]

    A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface, Arch. Rational Mech. Anal., 133 (1996), 299-331.

    [24]

    T. TaoHarmonic analysis, http://www.math.ucla.edu/~tao (Winter '07, Notes 6).

    [25]

    S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in $2$-D, Invent. Math., 130 (1997), 39-72.

    [26]

    S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc., 12 (1999), 445-495.

    [27]

    L. Xu and Z. Zhang, On the free boundary problem to the two viscous immiscible fluids, J. Differential Equations, 248 (2010), 1044-1111.

    [28]

    H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth, Publ. Res. Inst. Math. Sci., 18 (1982), 49-96.

    [29]

    H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ., 23 (1983), 649-694.

    [30]

    P. Zhang and Z. Zhang, On the free boundary problem of three-dimensional incompressible Euler equations, Comm. Pure Appl. Math., 61 (2008), 877-940.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return