December  2012, 1(2): 315-336. doi: 10.3934/eect.2012.1.315

On the exponential stabilization of a thermo piezoelectric/piezomagnetic system

1. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil, Brazil

Received  November 2011 Revised  May 2012 Published  October 2012

This paper is motivated by a piezoelectric/piezomagnetic phenomenon in the presence of thermal effects. The evolution system we consider is linear and coupled between one hyperbolic , two elliptic and one parabolic equation. We show the equivalence between ``the exponential decay of the total energy of our system" and an ``observability inequality for an anisotropic elastic wave system" assuming that a geometric condition is satisfied. This geometric condition ensures that the elliptic operator associated with the mechanical part of our system has no eigenfunctions $ \Psi $ such that the divergence div (Λ $ \Psi $ ) = 0 in $\Omega$ where $ Λ $ denotes the thermal expansion tensor.
Citation: Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations & Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315
References:
[1]

V. I. Alshits, A. N. Darinskii and J. Lothe, On the Existence of Surface Waves in Half-Infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties,, Wave Motion, 16 (1992), 265.   Google Scholar

[2]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system,, Asymptotic Analysis, 73 (2011), 125.   Google Scholar

[3]

I. Babuska, Error bounds for finite element method,, Numerishe Mathematik, 16 (1971), 322.   Google Scholar

[4]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II,", North-Holland, (1988).   Google Scholar

[5]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity,, Arch. Rational Mech. Anal, 29 (1968), 241.   Google Scholar

[6]

P. Destuynder and M. Salaun, A mixed finite element for shell model with free edge boundary conditions Part I. The mixed variational formulation,, Comput. Methods Appl. Mech. Engrg., 120 (1995), 195.   Google Scholar

[7]

H. Funakubo, "Shape Memory Alloys,", Translated from the Japanese by J. B. Kennedy, (1984).   Google Scholar

[8]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity,, Nonlinear Anal. TMA, 21 (1993), 65.   Google Scholar

[9]

D. Iessan, On some theorems in Thermopiezoelectricity,, J. Thermal Stresses, 12 (1989), 209.   Google Scholar

[10]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation,, ESAIM, 12 (2006), 198.   Google Scholar

[11]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media,, SIAM, 46 (2007), 1080.   Google Scholar

[12]

I. Lasiecka and B. Miara, Exact controllability of a 3D piezoelectric body,, C. R. Math. Acad. Sci. Paris, 347 (2009), 167.   Google Scholar

[13]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Rational Mech. Anal, 148 (1999), 179.   Google Scholar

[14]

J. Y. Li, Uniqueness theorem and reciprocity theorem for the linear thermo-electro-magneto-elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 56 (2003), 35.   Google Scholar

[15]

J. Y. Li and M. L. Dunn, Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behavior,, Journal of Intelligent Material Systems and Structures, 9 (1998), 404.   Google Scholar

[16]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systémes Distribués,", Tome 1 Contrôlabilité exacte, (1988).   Google Scholar

[17]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Values Problems and Applications,", Volume I, (1972).   Google Scholar

[18]

G. P. Menzala and J. S. Suárez, On a thermopiezoelectric model: Exponential decay of the total energy,, (Submitted for publication)., ().   Google Scholar

[19]

D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems,, SIAM J. MATH. ANAL., 37 (2005), 651.   Google Scholar

[20]

B. Miara and M. L. Santos, Energy decay in piezoelectric systems,, Applicable Analysis, 88 (2009), 947.   Google Scholar

[21]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates,, International Journal of Solid Structures, 10 (1974), 625.   Google Scholar

[22]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugalial. Math., 60 (2003), 73.   Google Scholar

[23]

W. Nowacki, Some general theorems of thermopiezoelectricity,, J. Thermal Stresses, 1 (1978), 171.   Google Scholar

[24]

J. M. Sejje Suárez, "Modelling of Thermopiezoelectric Phenomenon: Asymptotic Analysis and Numerical Simulation,", Doctoral thesis, (2011).   Google Scholar

[25]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura et. Applicata, CXLVI (1987), 65.   Google Scholar

[26]

R. C. Smith, "Smart Material Systems. Model development,", SIAM, (2005).   Google Scholar

[27]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design,", Cambridge University Press, (2001).   Google Scholar

[28]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors,", Kluwer Academic Publishers, (1997).   Google Scholar

[29]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291.   Google Scholar

show all references

References:
[1]

V. I. Alshits, A. N. Darinskii and J. Lothe, On the Existence of Surface Waves in Half-Infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties,, Wave Motion, 16 (1992), 265.   Google Scholar

[2]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system,, Asymptotic Analysis, 73 (2011), 125.   Google Scholar

[3]

I. Babuska, Error bounds for finite element method,, Numerishe Mathematik, 16 (1971), 322.   Google Scholar

[4]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II,", North-Holland, (1988).   Google Scholar

[5]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity,, Arch. Rational Mech. Anal, 29 (1968), 241.   Google Scholar

[6]

P. Destuynder and M. Salaun, A mixed finite element for shell model with free edge boundary conditions Part I. The mixed variational formulation,, Comput. Methods Appl. Mech. Engrg., 120 (1995), 195.   Google Scholar

[7]

H. Funakubo, "Shape Memory Alloys,", Translated from the Japanese by J. B. Kennedy, (1984).   Google Scholar

[8]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity,, Nonlinear Anal. TMA, 21 (1993), 65.   Google Scholar

[9]

D. Iessan, On some theorems in Thermopiezoelectricity,, J. Thermal Stresses, 12 (1989), 209.   Google Scholar

[10]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation,, ESAIM, 12 (2006), 198.   Google Scholar

[11]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media,, SIAM, 46 (2007), 1080.   Google Scholar

[12]

I. Lasiecka and B. Miara, Exact controllability of a 3D piezoelectric body,, C. R. Math. Acad. Sci. Paris, 347 (2009), 167.   Google Scholar

[13]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Rational Mech. Anal, 148 (1999), 179.   Google Scholar

[14]

J. Y. Li, Uniqueness theorem and reciprocity theorem for the linear thermo-electro-magneto-elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 56 (2003), 35.   Google Scholar

[15]

J. Y. Li and M. L. Dunn, Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behavior,, Journal of Intelligent Material Systems and Structures, 9 (1998), 404.   Google Scholar

[16]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systémes Distribués,", Tome 1 Contrôlabilité exacte, (1988).   Google Scholar

[17]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Values Problems and Applications,", Volume I, (1972).   Google Scholar

[18]

G. P. Menzala and J. S. Suárez, On a thermopiezoelectric model: Exponential decay of the total energy,, (Submitted for publication)., ().   Google Scholar

[19]

D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems,, SIAM J. MATH. ANAL., 37 (2005), 651.   Google Scholar

[20]

B. Miara and M. L. Santos, Energy decay in piezoelectric systems,, Applicable Analysis, 88 (2009), 947.   Google Scholar

[21]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates,, International Journal of Solid Structures, 10 (1974), 625.   Google Scholar

[22]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugalial. Math., 60 (2003), 73.   Google Scholar

[23]

W. Nowacki, Some general theorems of thermopiezoelectricity,, J. Thermal Stresses, 1 (1978), 171.   Google Scholar

[24]

J. M. Sejje Suárez, "Modelling of Thermopiezoelectric Phenomenon: Asymptotic Analysis and Numerical Simulation,", Doctoral thesis, (2011).   Google Scholar

[25]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura et. Applicata, CXLVI (1987), 65.   Google Scholar

[26]

R. C. Smith, "Smart Material Systems. Model development,", SIAM, (2005).   Google Scholar

[27]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design,", Cambridge University Press, (2001).   Google Scholar

[28]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors,", Kluwer Academic Publishers, (1997).   Google Scholar

[29]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291.   Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[4]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[8]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[9]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[16]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[20]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

[Back to Top]