December  2012, 1(2): 315-336. doi: 10.3934/eect.2012.1.315

On the exponential stabilization of a thermo piezoelectric/piezomagnetic system

1. 

National Laboratory of Scientific Computation, LNCC/MCT, Av. Getulio Vargas 333, Quitandinha, Petrópolis, RJ, 25651-070, Brazil, Brazil

Received  November 2011 Revised  May 2012 Published  October 2012

This paper is motivated by a piezoelectric/piezomagnetic phenomenon in the presence of thermal effects. The evolution system we consider is linear and coupled between one hyperbolic , two elliptic and one parabolic equation. We show the equivalence between ``the exponential decay of the total energy of our system" and an ``observability inequality for an anisotropic elastic wave system" assuming that a geometric condition is satisfied. This geometric condition ensures that the elliptic operator associated with the mechanical part of our system has no eigenfunctions $ \Psi $ such that the divergence div (Λ $ \Psi $ ) = 0 in $\Omega$ where $ Λ $ denotes the thermal expansion tensor.
Citation: Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations & Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315
References:
[1]

V. I. Alshits, A. N. Darinskii and J. Lothe, On the Existence of Surface Waves in Half-Infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties,, Wave Motion, 16 (1992), 265. Google Scholar

[2]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system,, Asymptotic Analysis, 73 (2011), 125. Google Scholar

[3]

I. Babuska, Error bounds for finite element method,, Numerishe Mathematik, 16 (1971), 322. Google Scholar

[4]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II,", North-Holland, (1988). Google Scholar

[5]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity,, Arch. Rational Mech. Anal, 29 (1968), 241. Google Scholar

[6]

P. Destuynder and M. Salaun, A mixed finite element for shell model with free edge boundary conditions Part I. The mixed variational formulation,, Comput. Methods Appl. Mech. Engrg., 120 (1995), 195. Google Scholar

[7]

H. Funakubo, "Shape Memory Alloys,", Translated from the Japanese by J. B. Kennedy, (1984). Google Scholar

[8]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity,, Nonlinear Anal. TMA, 21 (1993), 65. Google Scholar

[9]

D. Iessan, On some theorems in Thermopiezoelectricity,, J. Thermal Stresses, 12 (1989), 209. Google Scholar

[10]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation,, ESAIM, 12 (2006), 198. Google Scholar

[11]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media,, SIAM, 46 (2007), 1080. Google Scholar

[12]

I. Lasiecka and B. Miara, Exact controllability of a 3D piezoelectric body,, C. R. Math. Acad. Sci. Paris, 347 (2009), 167. Google Scholar

[13]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Rational Mech. Anal, 148 (1999), 179. Google Scholar

[14]

J. Y. Li, Uniqueness theorem and reciprocity theorem for the linear thermo-electro-magneto-elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 56 (2003), 35. Google Scholar

[15]

J. Y. Li and M. L. Dunn, Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behavior,, Journal of Intelligent Material Systems and Structures, 9 (1998), 404. Google Scholar

[16]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systémes Distribués,", Tome 1 Contrôlabilité exacte, (1988). Google Scholar

[17]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Values Problems and Applications,", Volume I, (1972). Google Scholar

[18]

G. P. Menzala and J. S. Suárez, On a thermopiezoelectric model: Exponential decay of the total energy,, (Submitted for publication)., (). Google Scholar

[19]

D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems,, SIAM J. MATH. ANAL., 37 (2005), 651. Google Scholar

[20]

B. Miara and M. L. Santos, Energy decay in piezoelectric systems,, Applicable Analysis, 88 (2009), 947. Google Scholar

[21]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates,, International Journal of Solid Structures, 10 (1974), 625. Google Scholar

[22]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugalial. Math., 60 (2003), 73. Google Scholar

[23]

W. Nowacki, Some general theorems of thermopiezoelectricity,, J. Thermal Stresses, 1 (1978), 171. Google Scholar

[24]

J. M. Sejje Suárez, "Modelling of Thermopiezoelectric Phenomenon: Asymptotic Analysis and Numerical Simulation,", Doctoral thesis, (2011). Google Scholar

[25]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura et. Applicata, CXLVI (1987), 65. Google Scholar

[26]

R. C. Smith, "Smart Material Systems. Model development,", SIAM, (2005). Google Scholar

[27]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design,", Cambridge University Press, (2001). Google Scholar

[28]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors,", Kluwer Academic Publishers, (1997). Google Scholar

[29]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291. Google Scholar

show all references

References:
[1]

V. I. Alshits, A. N. Darinskii and J. Lothe, On the Existence of Surface Waves in Half-Infinite Anisotropic Elastic Media with Piezoelectric and Piezomagnetic Properties,, Wave Motion, 16 (1992), 265. Google Scholar

[2]

K. Ammari and S. Nicaise, Stabilization of a piezoelectric system,, Asymptotic Analysis, 73 (2011), 125. Google Scholar

[3]

I. Babuska, Error bounds for finite element method,, Numerishe Mathematik, 16 (1971), 322. Google Scholar

[4]

P. G. Ciarlet, "Mathematical Elasticity, Vols I and II,", North-Holland, (1988). Google Scholar

[5]

C. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity,, Arch. Rational Mech. Anal, 29 (1968), 241. Google Scholar

[6]

P. Destuynder and M. Salaun, A mixed finite element for shell model with free edge boundary conditions Part I. The mixed variational formulation,, Comput. Methods Appl. Mech. Engrg., 120 (1995), 195. Google Scholar

[7]

H. Funakubo, "Shape Memory Alloys,", Translated from the Japanese by J. B. Kennedy, (1984). Google Scholar

[8]

D. Henry, O. Lopes and A. Perissinotto, On the essential spectrum of a semigroup of thermoelasticity,, Nonlinear Anal. TMA, 21 (1993), 65. Google Scholar

[9]

D. Iessan, On some theorems in Thermopiezoelectricity,, J. Thermal Stresses, 12 (1989), 209. Google Scholar

[10]

B. Kapitonov, B. Miara and G. Perla Menzala, Stabilization of a layered Piezoelectric 3-D body by boundary dissipation,, ESAIM, 12 (2006), 198. Google Scholar

[11]

B. Kapitonov, B. Miara and G. Perla Menzala, Boundary observation and exact control of a quasi electrostatic piezoelectric system in multilayered media,, SIAM, 46 (2007), 1080. Google Scholar

[12]

I. Lasiecka and B. Miara, Exact controllability of a 3D piezoelectric body,, C. R. Math. Acad. Sci. Paris, 347 (2009), 167. Google Scholar

[13]

G. Lebeau and E. Zuazua, Decay rates for the three-dimensional linear system of thermoelasticity,, Arch. Rational Mech. Anal, 148 (1999), 179. Google Scholar

[14]

J. Y. Li, Uniqueness theorem and reciprocity theorem for the linear thermo-electro-magneto-elasticity,, The Quarterly Journal of Mechanics and Applied Mathematics, 56 (2003), 35. Google Scholar

[15]

J. Y. Li and M. L. Dunn, Micromechanics of magnetoelectroelastic composite materials: Average fields and effective behavior,, Journal of Intelligent Material Systems and Structures, 9 (1998), 404. Google Scholar

[16]

J. L. Lions, "Contrôlabilité Exacte, Stabilization et Perturbations de Systémes Distribués,", Tome 1 Contrôlabilité exacte, (1988). Google Scholar

[17]

J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Values Problems and Applications,", Volume I, (1972). Google Scholar

[18]

G. P. Menzala and J. S. Suárez, On a thermopiezoelectric model: Exponential decay of the total energy,, (Submitted for publication)., (). Google Scholar

[19]

D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems,, SIAM J. MATH. ANAL., 37 (2005), 651. Google Scholar

[20]

B. Miara and M. L. Santos, Energy decay in piezoelectric systems,, Applicable Analysis, 88 (2009), 947. Google Scholar

[21]

R. D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates,, International Journal of Solid Structures, 10 (1974), 625. Google Scholar

[22]

S. Nicaise, Stability and controllability of the electromagneto-elastic system,, Portugalial. Math., 60 (2003), 73. Google Scholar

[23]

W. Nowacki, Some general theorems of thermopiezoelectricity,, J. Thermal Stresses, 1 (1978), 171. Google Scholar

[24]

J. M. Sejje Suárez, "Modelling of Thermopiezoelectric Phenomenon: Asymptotic Analysis and Numerical Simulation,", Doctoral thesis, (2011). Google Scholar

[25]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura et. Applicata, CXLVI (1987), 65. Google Scholar

[26]

R. C. Smith, "Smart Material Systems. Model development,", SIAM, (2005). Google Scholar

[27]

A. V. Srinivasan and D. M. McFarland, "Smart Structures: Analysis and Design,", Cambridge University Press, (2001). Google Scholar

[28]

K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors,", Kluwer Academic Publishers, (1997). Google Scholar

[29]

E. Zuazua, Controllability of the linear system of thermoelasticity,, J. Math. Pures Appl., 74 (1995), 291. Google Scholar

[1]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5273-5292. doi: 10.3934/dcds.2013.33.5273

[2]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations & Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

[3]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[4]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks & Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[5]

Tomasz Komorowski, Stefano Olla, Marielle Simon. Macroscopic evolution of mechanical and thermal energy in a harmonic chain with random flip of velocities. Kinetic & Related Models, 2018, 11 (3) : 615-645. doi: 10.3934/krm.2018026

[6]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[7]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[8]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[9]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the one-dimensional version of the dynamical Marguerre-Vlasov system with thermal effects. Conference Publications, 2009, 2009 (Special) : 536-547. doi: 10.3934/proc.2009.2009.536

[10]

Irena Lasiecka, To Fu Ma, Rodrigo Nunes Monteiro. Long-time dynamics of vectorial von Karman system with nonlinear thermal effects and free boundary conditions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1037-1072. doi: 10.3934/dcdsb.2018141

[11]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[12]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[13]

Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433

[14]

Ruy Coimbra Charão, Jáuber Cavalcante Oliveira, Gustavo Alberto Perla Menzala. Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 797-821. doi: 10.3934/dcds.2009.25.797

[15]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[16]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[17]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[18]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[19]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[20]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

[Back to Top]