December  2012, 1(2): 337-354. doi: 10.3934/eect.2012.1.337

Energy methods for abstract nonlinear Schrödinger equations

1. 

Department of Mathematics, Science University of Tokyo, 1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601

2. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received  June 2012 Revised  July 2012 Published  October 2012

So far there seems to be no abstract formulations for nonlinear Schrödinger equations (NLS). In some sense Cazenave[2, Chapter 3] has given a guiding principle to replace the free Schrödinger group with the approximate identity of resolvents. In fact, he succeeded in separating the existence theory from the Strichartz estimates. This paper is a proposal to extend his guiding principle by using the square root of the resolvent. More precisely, the abstract theory here unifies the local existence of weak solutions to (NLS) with not only typical nonlinearities but also some critical cases. Moreover, the theory yields the improvement of [21].
Citation: Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337
References:
[1]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1. Google Scholar

[2]

T. Cazenave, "Semilinear Schrödinger Equations,'', Courant Lecture Notes in Mathematics, (2003). Google Scholar

[3]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,'', Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[4]

T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$,, Manuscripta Math., 61 (1988), 477. doi: 10.1007/BF01258601. Google Scholar

[5]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case,, Nonlinear semigroups, (1987), 18. Google Scholar

[6]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Anal., 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A. Google Scholar

[7]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, J. Funct. Anal., 32 (1979), 1. doi: 10.1016/0022-1236(79)90076-4. Google Scholar

[8]

J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 309. Google Scholar

[9]

M. J. Goldberg, L. Vega and N. Visciglia, Couterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials,, Int. Math. Res. Not., (2006). Google Scholar

[10]

H. Hoshino and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations,, Funkcial. Ekvac., 34 (1991), 475. Google Scholar

[11]

R. Ikehata and N. Okazawa, Yosida approximation and nonlinear hyperbolic equation,, Nonlinear Anal., 15 (1990), 479. doi: 10.1016/0362-546X(90)90128-4. Google Scholar

[12]

T. Kato, "Perturbation Theory for Linear Operators,", Reprint of the 1980 edition, (1980). Google Scholar

[13]

T. Kato, On nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113. Google Scholar

[14]

T. Kato, Nonlinear Schrödinger equations,, in, 345 (1989), 218. Google Scholar

[15]

T. Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness,, J. Anal. Math., 67 (1995), 281. doi: 10.1007/BF02787794. Google Scholar

[16]

Y. Maeda and N. Okazawa, Holomorphic families of Schrödinger operators in $L^p$,, SUT J. Math., 47 (2011), 185. Google Scholar

[17]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765. doi: 10.1016/0362-546X(90)90104-O. Google Scholar

[18]

M. Ohta, Instability of bound states for abstract nonlinear Schrödinger equations,, J. Funct. Anal., 261 (2011), 90. doi: 10.1016/j.jfa.2011.03.010. Google Scholar

[19]

N. Okazawa, $L^p$-theory of Schrödinger operators with strongly singular potentials,, Japan. J. Math., 22 (1996), 199. Google Scholar

[20]

N.\,Okazawa, Gauss hypergeometric functions of operators unifying fractional powers and logarithms,, Semigroups of Operators: Theory and Applications (Rio de Janeiro, (2001), 209. Google Scholar

[21]

N. Okazawa, T. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials,, Appl. Anal., 91 (2012), 1605. doi: 10.1080/00036811.2011.631914). Google Scholar

[22]

Z. Shen, $L^p$ estimates for Schrödinger operators with certain potentials,, Ann. Inst. Fourier, 45 (1995), 513. doi: 10.5802/aif.1463. Google Scholar

[23]

T. Suzuki, Energy methods for Hartree type equations with inverse-square potentials,, preprint., (). Google Scholar

[24]

H. Tanabe, "Equations of Evolution,'', Monographs and Studies in Mathematics vol. 6, (1979). Google Scholar

[25]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, Funkcial. Ekvac., 30 (1987), 115. Google Scholar

[26]

Y. Tsutsumi, Global strong solutions for nonlinear Schrödinger equations,, Nonlinear Anal., 11 (1987), 1143. doi: 10.1016/0362-546X(87)90003-4. Google Scholar

[27]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equation in $L^p$,, Indiana Univ. Math. J., 29 (1980), 79. doi: 10.1512/iumj.1980.29.29007. Google Scholar

show all references

References:
[1]

H. Brezis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1. Google Scholar

[2]

T. Cazenave, "Semilinear Schrödinger Equations,'', Courant Lecture Notes in Mathematics, (2003). Google Scholar

[3]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,'', Oxford Lecture Series in Mathematics and its Applications, (1998). Google Scholar

[4]

T. Cazenave and F. B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$,, Manuscripta Math., 61 (1988), 477. doi: 10.1007/BF01258601. Google Scholar

[5]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case,, Nonlinear semigroups, (1987), 18. Google Scholar

[6]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Anal., 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A. Google Scholar

[7]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, J. Funct. Anal., 32 (1979), 1. doi: 10.1016/0022-1236(79)90076-4. Google Scholar

[8]

J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 309. Google Scholar

[9]

M. J. Goldberg, L. Vega and N. Visciglia, Couterexamples of Strichartz inequalities for Schrödinger equations with repulsive potentials,, Int. Math. Res. Not., (2006). Google Scholar

[10]

H. Hoshino and Y. Yamada, Solvability and smoothing effect for semilinear parabolic equations,, Funkcial. Ekvac., 34 (1991), 475. Google Scholar

[11]

R. Ikehata and N. Okazawa, Yosida approximation and nonlinear hyperbolic equation,, Nonlinear Anal., 15 (1990), 479. doi: 10.1016/0362-546X(90)90128-4. Google Scholar

[12]

T. Kato, "Perturbation Theory for Linear Operators,", Reprint of the 1980 edition, (1980). Google Scholar

[13]

T. Kato, On nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113. Google Scholar

[14]

T. Kato, Nonlinear Schrödinger equations,, in, 345 (1989), 218. Google Scholar

[15]

T. Kato, On nonlinear Schrödinger equations. II. $H^s$-solutions and unconditional well-posedness,, J. Anal. Math., 67 (1995), 281. doi: 10.1007/BF02787794. Google Scholar

[16]

Y. Maeda and N. Okazawa, Holomorphic families of Schrödinger operators in $L^p$,, SUT J. Math., 47 (2011), 185. Google Scholar

[17]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765. doi: 10.1016/0362-546X(90)90104-O. Google Scholar

[18]

M. Ohta, Instability of bound states for abstract nonlinear Schrödinger equations,, J. Funct. Anal., 261 (2011), 90. doi: 10.1016/j.jfa.2011.03.010. Google Scholar

[19]

N. Okazawa, $L^p$-theory of Schrödinger operators with strongly singular potentials,, Japan. J. Math., 22 (1996), 199. Google Scholar

[20]

N.\,Okazawa, Gauss hypergeometric functions of operators unifying fractional powers and logarithms,, Semigroups of Operators: Theory and Applications (Rio de Janeiro, (2001), 209. Google Scholar

[21]

N. Okazawa, T. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials,, Appl. Anal., 91 (2012), 1605. doi: 10.1080/00036811.2011.631914). Google Scholar

[22]

Z. Shen, $L^p$ estimates for Schrödinger operators with certain potentials,, Ann. Inst. Fourier, 45 (1995), 513. doi: 10.5802/aif.1463. Google Scholar

[23]

T. Suzuki, Energy methods for Hartree type equations with inverse-square potentials,, preprint., (). Google Scholar

[24]

H. Tanabe, "Equations of Evolution,'', Monographs and Studies in Mathematics vol. 6, (1979). Google Scholar

[25]

Y. Tsutsumi, $L^2$-solutions for nonlinear Schrödinger equations and nonlinear groups,, Funkcial. Ekvac., 30 (1987), 115. Google Scholar

[26]

Y. Tsutsumi, Global strong solutions for nonlinear Schrödinger equations,, Nonlinear Anal., 11 (1987), 1143. doi: 10.1016/0362-546X(87)90003-4. Google Scholar

[27]

F. B. Weissler, Local existence and nonexistence for semilinear parabolic equation in $L^p$,, Indiana Univ. Math. J., 29 (1980), 79. doi: 10.1512/iumj.1980.29.29007. Google Scholar

[1]

Toshiyuki Suzuki. Energy methods for Hartree type equations with inverse-square potentials. Evolution Equations & Control Theory, 2013, 2 (3) : 531-542. doi: 10.3934/eect.2013.2.531

[2]

Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022

[3]

Toshiyuki Suzuki. Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space. Conference Publications, 2015, 2015 (special) : 1019-1024. doi: 10.3934/proc.2015.1019

[4]

Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649

[5]

Veronica Felli, Ana Primo. Classification of local asymptotics for solutions to heat equations with inverse-square potentials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 65-107. doi: 10.3934/dcds.2011.31.65

[6]

Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, Jiqiang Zheng. The energy-critical NLS with inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3831-3866. doi: 10.3934/dcds.2017162

[7]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[8]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[9]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[10]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1589-1615. doi: 10.3934/dcdsb.2018221

[11]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[12]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Abdelaziz Rhandi. Kolmogorov equations perturbed by an inverse-square potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 623-630. doi: 10.3934/dcdss.2011.4.623

[13]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[14]

Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. Local smoothing and Strichartz estimates for the Klein-Gordon equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 597-608. doi: 10.3934/dcds.2020024

[15]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[16]

Simona Fornaro, Federica Gregorio, Abdelaziz Rhandi. Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in $L^p$--spaces. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2357-2372. doi: 10.3934/cpaa.2016040

[17]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[18]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[19]

Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems & Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011

[20]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

2018 Impact Factor: 1.048

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]