December  2012, 1(2): 355-392. doi: 10.3934/eect.2012.1.355

Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise

1. 

Center for Decision, Risk, Controls & Signals Intelligence, Naval Postgraduate School, Monterey, CA-93943, United States, United States

Received  July 2012 Revised  August 2012 Published  October 2012

In this paper, we establish the solvability of martingale solutions for the stochastic Navier-Stokes equations with Itô-Lévy noise in bounded and unbounded domains in $ \mathbb{R} ^d$,$d=2,3.$ The tightness criteria for the laws of a sequence of semimartingales is obtained from a theorem of Rebolledo as formulated by Metivier for the Lusin space valued processes. The existence of martingale solutions (in the sense of Stroock and Varadhan) relies on a generalization of Minty-Browder technique to stochastic case obtained from the local monotonicity of the drift term.
Citation: Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355
References:
[1]

D. Aldous, Stopping times and tightness,, Ann. Probab., 6 (1978), 335.   Google Scholar

[2]

D. Applebaum, "Lévy Processes and Stochastic Calculus,'', Cambridge University Press, (2009).   Google Scholar

[3]

A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes,, J. Functional Analysis, 13 (1973), 195.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[4]

S. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability,'', Dover Publications, (1981).   Google Scholar

[5]

E. DiBenedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993).   Google Scholar

[6]

Z. Dong and J. Zhai, Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump,, J. Differential Equations, 250 (2011), 2737.  doi: 10.1016/j.jde.2011.01.018.  Google Scholar

[7]

S. N. Ethier and T. G. Kurtz, "Markov Processes Characterization and Convergence,'', John Wiley and Sons, (1986).   Google Scholar

[8]

B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise,, under review., ().   Google Scholar

[9]

F. Flandoli, An introduction to 3D stochastic fluid dynamics, SPDE in hydrodynamic: recent progress and prospects,, Lecture Notes in Math., 1942 (2008), 51.   Google Scholar

[10]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations,, Probab. Theory Related Fields, 102 (1995), 367.  doi: 10.1007/BF01192467.  Google Scholar

[11]

A. Ichikawa, Some inequalities for martingales and stochastic convolutions,, Stoch. Anal. Appl., 4 (1986), 329.   Google Scholar

[12]

N. Jacob, "Pseudo Differential Operators and Markov Processes,'', Vol-III, (2005).   Google Scholar

[13]

A. Joffe and M. Metivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes,, Adv. in Appl. Probab., 18 (1986), 20.  doi: 10.2307/1427238.  Google Scholar

[14]

T. Komatsu, Markov processes associated with certain integro-differential operators,, Osaka J. Math., 10 (1973), 271.   Google Scholar

[15]

T. Komatsu, On the martingale problem for generators of stable processes with perturbations,, Osaka J. Math., 21 (1984), 113.   Google Scholar

[16]

G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces,'', Lecture Notes - Monograph Series, 26 (1995).   Google Scholar

[17]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Gordon and Breach, (1969).   Google Scholar

[18]

O. A. Ladyzhenskaya, The sixth millennium problem: Navier-Stokes equations, existence and smoothness,, Russian Math. Surveys, 58 (2003), 251.  doi: 10.1070/RM2003v058n02ABEH000610.  Google Scholar

[19]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l'hydrodynamique,, J. Math. Pures Appl., 12 (1933), 1.   Google Scholar

[20]

J. L. Menaldi and S.S. Sritharan, Stochastic 2-D Navier-Stokes equation,, Appl. Math. Optim., 46 (2002), 31.  doi: 10.1007/s00245-002-0734-6.  Google Scholar

[21]

M. Metivier, "Semimartingales: A Course on Stochastic Processes,'', Berlin, (1982).   Google Scholar

[22]

M. Metivier, "Stochastic Partial Differential Equations in Infinite Dimensional Spaces,'', Scuola Normale Superiore, (1988).   Google Scholar

[23]

M. Metivier and M. Viot, On weak solutions of stochastic partial differential equations, in "Stochastic Analysis", (Paris, 1322 (1988), 139.   Google Scholar

[24]

Y. R. Ou and S. S. Sritharan, Analysis of regularized Navier-Stokes equations I & II,, Quart. Appl. Math., 49 (1991), 651.   Google Scholar

[25]

K. R. Parthasarathy, "Probability Measures on Metric Spaces,'', Academic Press, (1967).   Google Scholar

[26]

S. Peszat and J. Zabczyk, "Stochastic Partial Differential Equations with Lévy Noise,'', Cambridge University Press, (2007).   Google Scholar

[27]

P. E. Protter, "Stochastic Integration and Differential Equations,'', Springer-Verlag, (2005).   Google Scholar

[28]

L. Schwartz, "Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures,'', Published for the Tata Institute of Fundamental Research, (1973).   Google Scholar

[29]

A. V. Skorohod, "Random Processes with Independent Increments,'', Kluwer Academic, (1991).   Google Scholar

[30]

S. S. Sritharan, On the acceleration of viscous fluid through an unbounded channel,, J. Math. Anal. Appl., 168 (1992), 255.  doi: 10.1016/0022-247X(92)90204-Q.  Google Scholar

[31]

S. S. Sritharan, Deterministic and stochastic control of Navier-Stokes equation with linear, monotone, and hyperviscosities,, Appl. Math. Optim., 41 (2000), 255.  doi: 10.1007/s0024599110140.  Google Scholar

[32]

S. S. Sritharan and P. Sundar, The stochastic magneto-hydrodynamic system,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2 (1999), 241.   Google Scholar

[33]

S. S. Sritharan, and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise,, Stochastic Process. Appl., 116 (2006), 1636.  doi: 10.1016/j.spa.2006.04.001.  Google Scholar

[34]

D. Stroock, Diffusion processes associated with Lévy generators,, Z. Wahrsch. Verw. Gebiete., 32 (1975), 209.  doi: 10.1007/BF00532614.  Google Scholar

[35]

D. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients I & II,, Comm. Pure Appl. Math., 22 (1969), 345.  doi: 10.1002/cpa.3160220304.  Google Scholar

[36]

D. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'', Springer-Verlag, (1979).   Google Scholar

[37]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1997).   Google Scholar

[38]

S. R. S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space,, Sankhya Ser. A, 24 (1962), 213.   Google Scholar

[39]

V. S. Varadarajan, Measures on topological spaces,, Amer. Math. Soc. Transl. Ser. II, 48 (1965), 161.   Google Scholar

[40]

M. Viot, Solutions faibles d'équations aux dérivées partielles non linéaires,, Thése Université Pierre et marie Curie, (1976).   Google Scholar

[41]

M. J. Vishik and A. V. Fursikov, "Mathematical Problems in Statistical Hydromechanics,'', Kluwer, (1988).   Google Scholar

[42]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations,, J. Math. Kyoto Univ., 11 (1971), 155.   Google Scholar

show all references

References:
[1]

D. Aldous, Stopping times and tightness,, Ann. Probab., 6 (1978), 335.   Google Scholar

[2]

D. Applebaum, "Lévy Processes and Stochastic Calculus,'', Cambridge University Press, (2009).   Google Scholar

[3]

A. Bensoussan and R. Temam, Equations stochastiques du type Navier-Stokes,, J. Functional Analysis, 13 (1973), 195.  doi: 10.1016/0022-1236(73)90045-1.  Google Scholar

[4]

S. Chandrasekhar, "Hydrodynamic and Hydromagnetic Stability,'', Dover Publications, (1981).   Google Scholar

[5]

E. DiBenedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993).   Google Scholar

[6]

Z. Dong and J. Zhai, Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump,, J. Differential Equations, 250 (2011), 2737.  doi: 10.1016/j.jde.2011.01.018.  Google Scholar

[7]

S. N. Ethier and T. G. Kurtz, "Markov Processes Characterization and Convergence,'', John Wiley and Sons, (1986).   Google Scholar

[8]

B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise,, under review., ().   Google Scholar

[9]

F. Flandoli, An introduction to 3D stochastic fluid dynamics, SPDE in hydrodynamic: recent progress and prospects,, Lecture Notes in Math., 1942 (2008), 51.   Google Scholar

[10]

F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations,, Probab. Theory Related Fields, 102 (1995), 367.  doi: 10.1007/BF01192467.  Google Scholar

[11]

A. Ichikawa, Some inequalities for martingales and stochastic convolutions,, Stoch. Anal. Appl., 4 (1986), 329.   Google Scholar

[12]

N. Jacob, "Pseudo Differential Operators and Markov Processes,'', Vol-III, (2005).   Google Scholar

[13]

A. Joffe and M. Metivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes,, Adv. in Appl. Probab., 18 (1986), 20.  doi: 10.2307/1427238.  Google Scholar

[14]

T. Komatsu, Markov processes associated with certain integro-differential operators,, Osaka J. Math., 10 (1973), 271.   Google Scholar

[15]

T. Komatsu, On the martingale problem for generators of stable processes with perturbations,, Osaka J. Math., 21 (1984), 113.   Google Scholar

[16]

G. Kallianpur and J. Xiong, "Stochastic Differential Equations in Infinite Dimensional Spaces,'', Lecture Notes - Monograph Series, 26 (1995).   Google Scholar

[17]

O. A. Ladyzhenskaya, "The Mathematical Theory of Viscous Incompressible Flow,'', Gordon and Breach, (1969).   Google Scholar

[18]

O. A. Ladyzhenskaya, The sixth millennium problem: Navier-Stokes equations, existence and smoothness,, Russian Math. Surveys, 58 (2003), 251.  doi: 10.1070/RM2003v058n02ABEH000610.  Google Scholar

[19]

J. Leray, Étude de diverses équations intégrales non linéaires et de quelques problémes que pose l'hydrodynamique,, J. Math. Pures Appl., 12 (1933), 1.   Google Scholar

[20]

J. L. Menaldi and S.S. Sritharan, Stochastic 2-D Navier-Stokes equation,, Appl. Math. Optim., 46 (2002), 31.  doi: 10.1007/s00245-002-0734-6.  Google Scholar

[21]

M. Metivier, "Semimartingales: A Course on Stochastic Processes,'', Berlin, (1982).   Google Scholar

[22]

M. Metivier, "Stochastic Partial Differential Equations in Infinite Dimensional Spaces,'', Scuola Normale Superiore, (1988).   Google Scholar

[23]

M. Metivier and M. Viot, On weak solutions of stochastic partial differential equations, in "Stochastic Analysis", (Paris, 1322 (1988), 139.   Google Scholar

[24]

Y. R. Ou and S. S. Sritharan, Analysis of regularized Navier-Stokes equations I & II,, Quart. Appl. Math., 49 (1991), 651.   Google Scholar

[25]

K. R. Parthasarathy, "Probability Measures on Metric Spaces,'', Academic Press, (1967).   Google Scholar

[26]

S. Peszat and J. Zabczyk, "Stochastic Partial Differential Equations with Lévy Noise,'', Cambridge University Press, (2007).   Google Scholar

[27]

P. E. Protter, "Stochastic Integration and Differential Equations,'', Springer-Verlag, (2005).   Google Scholar

[28]

L. Schwartz, "Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures,'', Published for the Tata Institute of Fundamental Research, (1973).   Google Scholar

[29]

A. V. Skorohod, "Random Processes with Independent Increments,'', Kluwer Academic, (1991).   Google Scholar

[30]

S. S. Sritharan, On the acceleration of viscous fluid through an unbounded channel,, J. Math. Anal. Appl., 168 (1992), 255.  doi: 10.1016/0022-247X(92)90204-Q.  Google Scholar

[31]

S. S. Sritharan, Deterministic and stochastic control of Navier-Stokes equation with linear, monotone, and hyperviscosities,, Appl. Math. Optim., 41 (2000), 255.  doi: 10.1007/s0024599110140.  Google Scholar

[32]

S. S. Sritharan and P. Sundar, The stochastic magneto-hydrodynamic system,, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2 (1999), 241.   Google Scholar

[33]

S. S. Sritharan, and P. Sundar, Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise,, Stochastic Process. Appl., 116 (2006), 1636.  doi: 10.1016/j.spa.2006.04.001.  Google Scholar

[34]

D. Stroock, Diffusion processes associated with Lévy generators,, Z. Wahrsch. Verw. Gebiete., 32 (1975), 209.  doi: 10.1007/BF00532614.  Google Scholar

[35]

D. Stroock and S. R. S. Varadhan, Diffusion processes with continuous coefficients I & II,, Comm. Pure Appl. Math., 22 (1969), 345.  doi: 10.1002/cpa.3160220304.  Google Scholar

[36]

D. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'', Springer-Verlag, (1979).   Google Scholar

[37]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1997).   Google Scholar

[38]

S. R. S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space,, Sankhya Ser. A, 24 (1962), 213.   Google Scholar

[39]

V. S. Varadarajan, Measures on topological spaces,, Amer. Math. Soc. Transl. Ser. II, 48 (1965), 161.   Google Scholar

[40]

M. Viot, Solutions faibles d'équations aux dérivées partielles non linéaires,, Thése Université Pierre et marie Curie, (1976).   Google Scholar

[41]

M. J. Vishik and A. V. Fursikov, "Mathematical Problems in Statistical Hydromechanics,'', Kluwer, (1988).   Google Scholar

[42]

T. Yamada and S. Watanabe, On the uniqueness of solutions of stochastic differential equations,, J. Math. Kyoto Univ., 11 (1971), 155.   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[12]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[15]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[19]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[20]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (411)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]