December  2012, 1(2): 393-429. doi: 10.3934/eect.2012.1.393

$L_p$-theory for a Cahn-Hilliard-Gurtin system

1. 

Institut für Mathematik, Martin-Luther Universität Halle-Wittenberg, 06099 Halle, Germany

Received  March 2012 Revised  June 2012 Published  October 2012

In this paper we study a generalized Cahn-Hilliard equation which was proposed by Gurtin [9]. We prove the existence and uniqueness of a local-in-time solution for a quasilinear version, that is, if the coefficients depend on the solution and its gradient. Moreover we show that local solutions to the corresponding semilinear problem exist globally as long as the physical potential satisfies certain growth conditions. Finally we study the long-time behaviour of the solutions and show that each solution converges to a equilibrium as time tends to infinity.
Citation: Mathias Wilke. $L_p$-theory for a Cahn-Hilliard-Gurtin system. Evolution Equations & Control Theory, 2012, 1 (2) : 393-429. doi: 10.3934/eect.2012.1.393
References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (eds. H.-J. Schmeisser and H. Triebel), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9-126.  Google Scholar

[2]

H. Amann, "Linear and Quasilinear Parabolic Problems," Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995.  Google Scholar

[3]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania 2000), 47 (2001), 3455-3466.  Google Scholar

[4]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[5]

R. Denk, M. Hieber and J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114.  Google Scholar

[6]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224. doi: 10.1007/s00209-007-0120-9.  Google Scholar

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.  Google Scholar

[8]

M. Girardi and L. Weis, Criteria for R-boundedness of operator families, Evolution equations, Lecture Notes in Pure and Appl. Math., Dekker, New York, 234 (2003), 203-221.  Google Scholar

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[10]

N. J. Kalton and L. Weis, The $H^ \infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345. doi: 10.1007/s002080100231.  Google Scholar

[11]

M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces, J. Evol. Equ., 10 (2010), 443-463. doi: 10.1007/s00028-010-0056-0.  Google Scholar

[12]

A. Miranville, Existence of solutions for a Cahn-Hilliard-Gurtin model, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 845-850. doi: 10.1016/S0764-4442(00)01731-6.  Google Scholar

[13]

A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. Math., (2003), 165-185.  Google Scholar

[14]

A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance, Asymptot. Anal., 16 (1998), 315-345.  Google Scholar

[15]

A. Miranville and A. Rougirel, Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations, Z. Angew. Math. Phys., 57 (2006), 244-268. doi: 10.1007/s00033-005-0017-6.  Google Scholar

[16]

A. Miranville and S. Zelik, Doubly nonlinear Cahn-Hilliard-Gurtin equations, Hokkaido Math. J., 38 (2009), 315-360.  Google Scholar

[17]

A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions, Phys. D, 158 (2001), 233-257. doi: 10.1016/S0167-2789(01)00317-7.  Google Scholar

[18]

A. Miranville and A. Piétrus, A new formulation of the Cahn-Hilliard equation, Nonlinear Anal. Real World Appl., 7 (2006), 285-307.  Google Scholar

[19]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452. doi: 10.1007/BF02570748.  Google Scholar

[20]

J. Prüss and M. Wilke, On conserved Penrose-Fife type systems, Parabolic Problems, The Herbert Amann Festschrift, Progress in nonlinear differential equations and their applications, Birkhäuser, Basel, 80 (2011), 541-576. Google Scholar

[21]

R. Seeley, Interpolation in $L^p$ with boundary conditions, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. Studia Math., 44 (1972), 47-60.  Google Scholar

show all references

References:
[1]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in "Function Spaces, Differential Operators and Nonlinear Analysis" (eds. H.-J. Schmeisser and H. Triebel), Teubner-Texte Math., Teubner, Stuttgart, 133 (1993), 9-126.  Google Scholar

[2]

H. Amann, "Linear and Quasilinear Parabolic Problems," Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995.  Google Scholar

[3]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania 2000), 47 (2001), 3455-3466.  Google Scholar

[4]

R. Chill, E. Fašangová and J. Prüss, Convergence to steady state of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462. doi: 10.1002/mana.200410431.  Google Scholar

[5]

R. Denk, M. Hieber and J. Prüss, $\mathcal R$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003), viii+114.  Google Scholar

[6]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257 (2007), 193-224. doi: 10.1007/s00209-007-0120-9.  Google Scholar

[7]

G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201. doi: 10.1007/BF01163654.  Google Scholar

[8]

M. Girardi and L. Weis, Criteria for R-boundedness of operator families, Evolution equations, Lecture Notes in Pure and Appl. Math., Dekker, New York, 234 (2003), 203-221.  Google Scholar

[9]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D, 92 (1996), 178-192. doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[10]

N. J. Kalton and L. Weis, The $H^ \infty$-calculus and sums of closed operators, Math. Ann., 321 (2001), 319-345. doi: 10.1007/s002080100231.  Google Scholar

[11]

M. Köhne, J. Prüss and M. Wilke, On quasilinear parabolic evolution equations in weighted $L_p$-spaces, J. Evol. Equ., 10 (2010), 443-463. doi: 10.1007/s00028-010-0056-0.  Google Scholar

[12]

A. Miranville, Existence of solutions for a Cahn-Hilliard-Gurtin model, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 845-850. doi: 10.1016/S0764-4442(00)01731-6.  Google Scholar

[13]

A. Miranville, Generalized Cahn-Hilliard equations based on a microforce balance, J. Appl. Math., (2003), 165-185.  Google Scholar

[14]

A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance, Asymptot. Anal., 16 (1998), 315-345.  Google Scholar

[15]

A. Miranville and A. Rougirel, Local and asymptotic analysis of the flow generated by the Cahn-Hilliard-Gurtin equations, Z. Angew. Math. Phys., 57 (2006), 244-268. doi: 10.1007/s00033-005-0017-6.  Google Scholar

[16]

A. Miranville and S. Zelik, Doubly nonlinear Cahn-Hilliard-Gurtin equations, Hokkaido Math. J., 38 (2009), 315-360.  Google Scholar

[17]

A. Miranville, Consistent models of Cahn-Hilliard-Gurtin equations with Neumann boundary conditions, Phys. D, 158 (2001), 233-257. doi: 10.1016/S0167-2789(01)00317-7.  Google Scholar

[18]

A. Miranville and A. Piétrus, A new formulation of the Cahn-Hilliard equation, Nonlinear Anal. Real World Appl., 7 (2006), 285-307.  Google Scholar

[19]

J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z., 203 (1990), 429-452. doi: 10.1007/BF02570748.  Google Scholar

[20]

J. Prüss and M. Wilke, On conserved Penrose-Fife type systems, Parabolic Problems, The Herbert Amann Festschrift, Progress in nonlinear differential equations and their applications, Birkhäuser, Basel, 80 (2011), 541-576. Google Scholar

[21]

R. Seeley, Interpolation in $L^p$ with boundary conditions, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. Studia Math., 44 (1972), 47-60.  Google Scholar

[1]

Alain Miranville, Giulio Schimperna. On a doubly nonlinear Cahn-Hilliard-Gurtin system. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 675-697. doi: 10.3934/dcdsb.2010.14.675

[2]

Sami Injrou, Morgan Pierre. Stable discretizations of the Cahn-Hilliard-Gurtin equations. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 1065-1080. doi: 10.3934/dcds.2008.22.1065

[3]

Gisèle Ruiz Goldstein, Alain Miranville. A Cahn-Hilliard-Gurtin model with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 387-400. doi: 10.3934/dcdss.2013.6.387

[4]

Michel Pierre, Morgan Pierre. Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5347-5377. doi: 10.3934/dcds.2013.33.5347

[5]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[6]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[7]

Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021136

[8]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[9]

Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189

[10]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

[11]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[12]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[13]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[14]

Zijuan Wen, Meng Fan, Asim M. Asiri, Ebraheem O. Alzahrani, Mohamed M. El-Dessoky, Yang Kuang. Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 407-420. doi: 10.3934/mbe.2017025

[15]

Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117

[16]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[17]

Masahiro Kubo, Noriaki Yamazaki. Elliptic-parabolic variational inequalities with time-dependent constraints. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 335-359. doi: 10.3934/dcds.2007.19.335

[18]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[19]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 763-782. doi: 10.3934/cpaa.2020289

[20]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]