June  2012, 1(1): 43-56. doi: 10.3934/eect.2012.1.43

Invariance for stochastic reaction-diffusion equations

1. 

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scienti ca 1, I-00133 Roma, Italy

2. 

Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56125 Pisa, Italy

Received  December 2011 Revised  February 2012 Published  March 2012

Given a stochastic reaction-diffusion equation on a bounded open subset $\mathcal O$ of $\mathbb{R}^n$, we discuss conditions for the invariance of a nonempty closed convex subset $K$ of $L^2(\mathcal O)$ under the corresponding flow. We obtain two general results under the assumption that the fourth power of the distance from $K$ is of class $C^2$, providing, respectively, a necessary and a sufficient condition for invariance. We also study the example where $K$ is the cone of all nonnegative functions in $L^2(\mathcal O)$.
Citation: Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43
References:
[1]

S. Agmon, "Lectures on Elliptic Boundary Value Problems," Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr., Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London, 1965.

[2]

P. Cannarsa and G. Da Prato, Stochastic viability for regular closed sets in Hilbert spaces, Rend. Lincei Math. Appl., 22 (2011), 1-10.

[3]

S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields, 125 (2003), 271-304. doi: 10.1007/s00440-002-0230-6.

[4]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert Spaces," London Mathematical Society Lecture Notes, 293, Cambridge University Press, Cambridge, 2002.

[6]

L. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[7]

D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm. Partial Differential Equations, 27 (2002), 1283-1299.

[8]

S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23 (1995), 157-172. doi: 10.1214/aop/1176988381.

show all references

References:
[1]

S. Agmon, "Lectures on Elliptic Boundary Value Problems," Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr., Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London, 1965.

[2]

P. Cannarsa and G. Da Prato, Stochastic viability for regular closed sets in Hilbert spaces, Rend. Lincei Math. Appl., 22 (2011), 1-10.

[3]

S. Cerrai, Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term, Probab. Theory Related Fields, 125 (2003), 271-304. doi: 10.1007/s00440-002-0230-6.

[4]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.

[5]

G. Da Prato and J. Zabczyk, "Second Order Partial Differential Equations in Hilbert Spaces," London Mathematical Society Lecture Notes, 293, Cambridge University Press, Cambridge, 2002.

[6]

L. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[7]

D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary, Comm. Partial Differential Equations, 27 (2002), 1283-1299.

[8]

S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23 (1995), 157-172. doi: 10.1214/aop/1176988381.

[1]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[2]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087

[3]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 187-208. doi: 10.3934/dcds.2018009

[4]

Dingshi Li, Kening Lu, Bixiang Wang, Xiaohu Wang. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3717-3747. doi: 10.3934/dcds.2019151

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Dingshi Li, Xuemin Wang. Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29 (2) : 1969-1990. doi: 10.3934/era.2020100

[7]

Peter E. Kloeden, Meihua Yang. Forward attracting sets of reaction-diffusion equations on variable domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1259-1271. doi: 10.3934/dcdsb.2019015

[8]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[9]

Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173

[10]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[11]

Yangyang Shi, Hongjun Gao. Homogenization for stochastic reaction-diffusion equations with singular perturbation term. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2401-2426. doi: 10.3934/dcdsb.2021137

[12]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[13]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[14]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[15]

Fuzhi Li, Yangrong Li, Renhai Wang. Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3663-3685. doi: 10.3934/dcds.2018158

[16]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[17]

Xiangming Zhu, Chengkui Zhong. Uniform attractors for nonautonomous reaction-diffusion equations with the nonlinearity in a larger symbol space. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3933-3945. doi: 10.3934/dcdsb.2021212

[18]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[19]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]