Citation: |
[1] |
F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments, Canad. Appl. Math. Quart., 3 (1995), 379-397. |
[2] |
H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations," Universitext, Springer, New York, 2011. |
[3] |
R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: Population models in a disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112 (1989), 293-318.doi: 10.1017/S030821050001876X. |
[4] |
R. S. Cantrell and C. Cosner, The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.doi: 10.1007/BF00167155. |
[5] |
R. S. Cantrell, C. Cosner and Y. Lou, Advection-mediated coexistence of competing species, Proc. Roy. Soc. Edinb. Sect A, 137 (2007), 497-518. |
[6] |
R. S. Cantrell, C. Cosner and Y. Lou, Approximating the ideal free distribution via reaction-diffusion-advection equations, J. Differential Equations, 245 (2008), 3687-3703.doi: 10.1016/j.jde.2008.07.024. |
[7] |
R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal and ideal free distribution, Math. Bios. Eng., 7 (2010), 17-36.doi: 10.3934/mbe.2010.7.17. |
[8] |
X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.doi: 10.1512/iumj.2008.57.3204. |
[9] |
C. Cosner and Y. Lou, Does movement toward better environments always benefit a population?, J. Math. Anal. Appl., 277 (2003), 489-503.doi: 10.1016/S0022-247X(02)00575-9. |
[10] |
W. Ding, H. Finotti, S. Lenhart, Y. Lou and Q. Ye, Optimal control of growth coefficient on a steady-state population model, Nonlinear Anal. Real World Appl., 11 (2010), 688-704.doi: 10.1016/j.nonrwa.2009.01.015. |
[11] |
L. C. Evans, "Partial Differential Equations," 2nd edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. |
[12] |
E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.doi: 10.2307/1939378. |
[13] |
P. Kareiva, Population dynamics in spatially complex environments: Theory and data, Phil. Trans. Riy. Soc. London Ser. B, 330 (1987), 175-190.doi: 10.1098/rstb.1990.0191. |
[14] |
M. Kot, "Elements of Mathematical Ecology," Cambridge University Press, Cambridge, 2001. |
[15] |
K.-Y. Lam, Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model, J. Diff. Eqns., 250 (2011), 161-181.doi: 10.1016/j.jde.2010.08.028. |
[16] |
K.-Y. Lam and W.-M. Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Discrete Contin. Dyn. Syst. Series A, 28 (2010), 1051-1067.doi: 10.3934/dcds.2010.28.1051. |
[17] |
S. Lenhart and T. J. Workman, "Optimal Control Applied to Biological Models," Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. |
[18] |
X. J. Li and J. M. Yong, "Optimal Control Theory for Infinite-Dimensional Systems," Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. |
[19] |
J.-L. Lions, "Optimal Control Systems Governed by Partial Differential Equations," Die Grundlehren der mathematischen Wissenschaften, Band 170, Springer-Verlag, New York-Berlin, 1971. |
[20] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translation of Mathematical Monographs, 23, AMS, Providence, RI, 1967. |
[21] |
J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications," Third edition, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003. |
[22] |
J. D. Murray and R. P. Sperb, Minimum domains for spatial patterns in a class of reaction-diffusion equations, J. Math. Biol., 18 (1983), 169-184.doi: 10.1007/BF00280665. |
[23] |
A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives," Second edition, Interdisciplinary Applied Mathematics, 14, Springer-Verlag, New York, 2001. |
[24] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96. |