March  2013, 2(1): 173-192. doi: 10.3934/eect.2013.2.173

Approximation of a semigroup model of anomalous diffusion in a bounded set

1. 

Department of Mathematics and Statistics, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States

2. 

Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250

Received  November 2012 Revised  December 2012 Published  January 2013

The convergence is established for a sequence of operator semigroups, where the limiting object is the transition semigroup for a reflected stable processes. For semilinear equations involving the generators of these transition semigroups, an approximation method is developed as well. This makes it possible to derive an a priori bound for solutions to these equations, and therefore prove global existence of solutions. An application to epidemiology is also given.
Citation: Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173-192. doi: 10.3934/eect.2013.2.173
References:
[1]

K. Bogdan, K. Burdzy and Z. Chen, Censored stable processes,, Probab. Theory Relat. Fields, 19 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[2]

D. Brockmann, Human mobility and spatial disease dynamics,, in, 2 (2009), 1.   Google Scholar

[3]

D. Brockmann, L. Hufnagel and T. Geisel, The scaling laws of human travel,, Nature, 439 (2006), 462.   Google Scholar

[4]

Z. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets,, Stoch. Process. Appl., 108 (2003), 27.  doi: 10.1016/S0304-4149(03)00105-4.  Google Scholar

[5]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints,, SIAM Rev., 54 (2012), 667.   Google Scholar

[6]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer, (1995).   Google Scholar

[7]

M. Fukushima, T. Oshima and M. Takeda, "Dirichlet Forms and Symmetric Markov Processes,", Walter de Gruyter, (1994).  doi: 10.1515/9783110889741.  Google Scholar

[8]

P. Grisvard, Caractérisation de quelques espaces d'interpolation,, Arch. Rational Mech. Anal., 26 (1967), 431.   Google Scholar

[9]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional laplacian,, Probab. Theory Relat. Fields, 134 (2006), 649.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[10]

K. Gustafson and G. Lumer, Multiplicative perturbation of semigroup generators,, Pac. J. Math., 41 (1972), 731.   Google Scholar

[11]

E. Hanert, Front dynamics in a two-species competition model driven by Lévy flights,, J. Theor. Biol., 300 (2012), 134.  doi: 10.1016/j.jtbi.2012.01.022.  Google Scholar

[12]

E. Hanert, E. Schumacher and E. Eleersnijder, Front dynamics in fractional-order epidemic models,, J. Theor. Biol., 279 (2011), 9.   Google Scholar

[13]

K. Ito and F. Kappel, The trotter kato theorem and approximation of PDEs,, Math. Comput., 67 (1998), 21.  doi: 10.1090/S0025-5718-98-00915-6.  Google Scholar

[14]

P. Kim, Weak convergence of censored and reflected stable processes,, Stoch. Process. Appl., 116 (2006), 1792.  doi: 10.1016/j.spa.2006.04.006.  Google Scholar

[15]

R. Klages, G. Radons and I. M. Sokolov, "Anomalous Transport,", Wiley-VCH, (2008).   Google Scholar

[16]

L. Lorenzi, A. Lundardi, G. Metafune and D. Pallara, "Analytic Semigroups and Reaction-Diffusion Problems,", unpublished Lecture Notes, ().   Google Scholar

[17]

T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market,, Nature, 397 (1999), 498.   Google Scholar

[18]

G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo and H. E. Stanley, Optimizing the success of random searches,, Nature, 401 (1999), 911.   Google Scholar

[19]

J. Wloka, "Partial Differential Equations,", Cambridge University Press, (1987).   Google Scholar

[20]

M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus, and Optimization,", Society for Industrial and Applied Mathematics, (2001).   Google Scholar

show all references

References:
[1]

K. Bogdan, K. Burdzy and Z. Chen, Censored stable processes,, Probab. Theory Relat. Fields, 19 (2003), 89.  doi: 10.1007/s00440-003-0275-1.  Google Scholar

[2]

D. Brockmann, Human mobility and spatial disease dynamics,, in, 2 (2009), 1.   Google Scholar

[3]

D. Brockmann, L. Hufnagel and T. Geisel, The scaling laws of human travel,, Nature, 439 (2006), 462.   Google Scholar

[4]

Z. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets,, Stoch. Process. Appl., 108 (2003), 27.  doi: 10.1016/S0304-4149(03)00105-4.  Google Scholar

[5]

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints,, SIAM Rev., 54 (2012), 667.   Google Scholar

[6]

K. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Springer, (1995).   Google Scholar

[7]

M. Fukushima, T. Oshima and M. Takeda, "Dirichlet Forms and Symmetric Markov Processes,", Walter de Gruyter, (1994).  doi: 10.1515/9783110889741.  Google Scholar

[8]

P. Grisvard, Caractérisation de quelques espaces d'interpolation,, Arch. Rational Mech. Anal., 26 (1967), 431.   Google Scholar

[9]

Q. Guan and Z. Ma, Reflected symmetric $\alpha$-stable processes and regional fractional laplacian,, Probab. Theory Relat. Fields, 134 (2006), 649.  doi: 10.1007/s00440-005-0438-3.  Google Scholar

[10]

K. Gustafson and G. Lumer, Multiplicative perturbation of semigroup generators,, Pac. J. Math., 41 (1972), 731.   Google Scholar

[11]

E. Hanert, Front dynamics in a two-species competition model driven by Lévy flights,, J. Theor. Biol., 300 (2012), 134.  doi: 10.1016/j.jtbi.2012.01.022.  Google Scholar

[12]

E. Hanert, E. Schumacher and E. Eleersnijder, Front dynamics in fractional-order epidemic models,, J. Theor. Biol., 279 (2011), 9.   Google Scholar

[13]

K. Ito and F. Kappel, The trotter kato theorem and approximation of PDEs,, Math. Comput., 67 (1998), 21.  doi: 10.1090/S0025-5718-98-00915-6.  Google Scholar

[14]

P. Kim, Weak convergence of censored and reflected stable processes,, Stoch. Process. Appl., 116 (2006), 1792.  doi: 10.1016/j.spa.2006.04.006.  Google Scholar

[15]

R. Klages, G. Radons and I. M. Sokolov, "Anomalous Transport,", Wiley-VCH, (2008).   Google Scholar

[16]

L. Lorenzi, A. Lundardi, G. Metafune and D. Pallara, "Analytic Semigroups and Reaction-Diffusion Problems,", unpublished Lecture Notes, ().   Google Scholar

[17]

T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of a financial market,, Nature, 397 (1999), 498.   Google Scholar

[18]

G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo and H. E. Stanley, Optimizing the success of random searches,, Nature, 401 (1999), 911.   Google Scholar

[19]

J. Wloka, "Partial Differential Equations,", Cambridge University Press, (1987).   Google Scholar

[20]

M. C. Delfour and J.-P. Zolésio, "Shapes and Geometries: Analysis, Differential Calculus, and Optimization,", Society for Industrial and Applied Mathematics, (2001).   Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]