June  2013, 2(2): 233-253. doi: 10.3934/eect.2013.2.233

Rational decay rates for a PDE heat--structure interaction: A frequency domain approach

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States

2. 

Department of Mathematics, University of Virginia, Charlottesville, VA 22903

Received  December 2012 Revised  February 2013 Published  March 2013

In this paper, we consider a simplified version of a fluid--structure PDE model ---in fact, a heat--structure interaction PDE-model. It is intended to be a first step toward a more realistic fluid--structure PDE model which has been of longstanding interest within the mathematical and biological sciences [33, p. 121], [17], [19]. This physically more sound and mathematically more challenging model will be treated in [13]. The simplified model replaces the linear dynamic Stokes equation with a linear $n$-dimensional heat equation (heat--structure interaction). The entire dynamics manifests both hyperbolic and parabolic features. Our main result is as follows: Given smooth initial data---i.e., data in the domain of the associated semigroup generator---the corresponding solutions decay at the rate $o( t^{-\frac{1}{2}}) $ (see Theorem 1.3 below). The basis of our proof is the recently derived resolvent criterion in [15]. In order to apply it, however, suitable PDE-estimates need to be established for each component by also making critical use of the interface conditions. A companion paper [6] will sharpen Lemma 5.8 of the present work by use of a lengthy and technical microlocal argument as in [26,29,30,31], to obtain the optimal value $\alpha =1$; hence, the optimal decay rate $o(t^{-1})$. See Remarks 1.2,1.3.
Citation: George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations & Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233
References:
[1]

F. Abdullah, D. Mercier, and S. Nicaise, Spectral analysis and exponential or polynomial stability and exponential or polynomial stability of some indefinite sign damped problems,, preprint, (2012).   Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.2307/2000826.  Google Scholar

[3]

G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optimiz., 55 (2007), 163.  doi: 10.1007/s00245-006-0884-z.  Google Scholar

[4]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259.  doi: 10.4064/am35-3-2.  Google Scholar

[5]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,, special issue of Georgian Math. J., 15 (2008), 403.   Google Scholar

[6]

G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface,, (2012)., (2012).   Google Scholar

[7]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15.  doi: 10.1090/conm/440/08475.  Google Scholar

[8]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface,, Discr. Cont. Dynam. Sys., 22 (2008), 817.  doi: 10.3934/dcds.2008.22.817.  Google Scholar

[9]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eqns., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[10]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Cont. Dynam. Sys., 2 (2009), 417.  doi: 10.3934/dcdss.2009.2.417.  Google Scholar

[11]

G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis,, Applicable Analysis, 88 (2009), 1357.  doi: 10.1080/00036810903278513.  Google Scholar

[12]

G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system,, J. Evol. Eqns., 9 (2009), 341.  doi: 10.1007/s00028-009-0015-9.  Google Scholar

[13]

G. Avalos and R. Triggiani, Rational decay rates for a fluid-structure interaction model via a resolvent-based approach,, (2013)., (2013).   Google Scholar

[14]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions,, in, 440 (2007), 55.   Google Scholar

[15]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[16]

K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups,, Stud. Sci. Math. Hung., 30 (1995), 162.   Google Scholar

[17]

H. Cohen and S. I. Rubinow, "Some Mathematical Topics in Biology,", Proc. Symp. on System Theory, (1965), 321.   Google Scholar

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).   Google Scholar

[19]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discr. Contin. Dynam. Sys., 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar

[20]

T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptotic Analysis, 51 (2007), 17.   Google Scholar

[21]

L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, IMA J. Appl. Math., 75 (2010), 881.  doi: 10.1093/imamat/hxq038.  Google Scholar

[22]

B. Kellogg, Properties of solutions of elliptic boundary value problems,, in, (1972), 47.   Google Scholar

[23]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Diff. Eqns., 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[24]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators,, J. Math. Pures et Appl., 65 (1986), 149.   Google Scholar

[25]

I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control,, Appl. Math. Optimiz., 19 (1986), 243.   Google Scholar

[26]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions,, Appl. Math. Optim., 25 (1992), 189.  doi: 10.1007/BF01182480.  Google Scholar

[27]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. I,", Cambridge University Press, (2000).   Google Scholar

[28]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. II,", Cambridge University Press, (2000).   Google Scholar

[29]

I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type, Part I: The $ L_2 $ boundary case ,, Annali Matem. Pura e Applicata, (1990), 285.   Google Scholar

[30]

I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli equations ,, Applied Math. Optimization, (1993), 277.   Google Scholar

[31]

I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions ,, Rocky Mountain. J.Math., (2000), 981.   Google Scholar

[32]

N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach,, Special issue on the mathematical foundations of system theory, 25 (1978), 721.  doi: 10.1109/TCS.1978.1084539.  Google Scholar

[33]

J.-L. Lions, "Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires,", Dunod; Gauthier-Villars, (1969).   Google Scholar

[34]

J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Vol. I,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[35]

Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach space,, Stud. Math., 88 (1988), 37.   Google Scholar

[36]

J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping,, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97.   Google Scholar

[37]

, J. M. Rivera,, private communication, (2012).   Google Scholar

[38]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, JMAA, 326 (2007), 691.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[39]

J. E. Muñoz Rivera, M. G. Naso and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, JMAA, 286 (2003), 692.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[40]

D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[41]

H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2001).  doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[42]

R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems,, in, 6 (1978), 380.   Google Scholar

[43]

R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems,, Appl. Math. Optimiz., 18 (1988), 241.  doi: 10.1007/BF01443625.  Google Scholar

[44]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach,, J. Math. Anal. Appl., 137 (1989), 438.  doi: 10.1016/0022-247X(89)90255-2.  Google Scholar

[45]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction,, Arch. Rat. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

show all references

References:
[1]

F. Abdullah, D. Mercier, and S. Nicaise, Spectral analysis and exponential or polynomial stability and exponential or polynomial stability of some indefinite sign damped problems,, preprint, (2012).   Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups,, Trans. Amer. Math. Soc., 306 (1988), 837.  doi: 10.2307/2000826.  Google Scholar

[3]

G. Avalos, The strong stability and instability of a fluid-structure semigroup,, Appl. Math. Optimiz., 55 (2007), 163.  doi: 10.1007/s00245-006-0884-z.  Google Scholar

[4]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method,, Applicationes Mathematicae, 35 (2008), 259.  doi: 10.4064/am35-3-2.  Google Scholar

[5]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system,, special issue of Georgian Math. J., 15 (2008), 403.   Google Scholar

[6]

G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface,, (2012)., (2012).   Google Scholar

[7]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties,, in, 440 (2007), 15.  doi: 10.1090/conm/440/08475.  Google Scholar

[8]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface,, Discr. Cont. Dynam. Sys., 22 (2008), 817.  doi: 10.3934/dcds.2008.22.817.  Google Scholar

[9]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction,, J. Diff. Eqns., 245 (2008), 737.  doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[10]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction,, Discr. Cont. Dynam. Sys., 2 (2009), 417.  doi: 10.3934/dcdss.2009.2.417.  Google Scholar

[11]

G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis,, Applicable Analysis, 88 (2009), 1357.  doi: 10.1080/00036810903278513.  Google Scholar

[12]

G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system,, J. Evol. Eqns., 9 (2009), 341.  doi: 10.1007/s00028-009-0015-9.  Google Scholar

[13]

G. Avalos and R. Triggiani, Rational decay rates for a fluid-structure interaction model via a resolvent-based approach,, (2013)., (2013).   Google Scholar

[14]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions,, in, 440 (2007), 55.   Google Scholar

[15]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups,, Math. Ann., 347 (2010), 455.  doi: 10.1007/s00208-009-0439-0.  Google Scholar

[16]

K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups,, Stud. Sci. Math. Hung., 30 (1995), 162.   Google Scholar

[17]

H. Cohen and S. I. Rubinow, "Some Mathematical Topics in Biology,", Proc. Symp. on System Theory, (1965), 321.   Google Scholar

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations,", Chicago Lectures in Mathematics, (1988).   Google Scholar

[19]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem,, Discr. Contin. Dynam. Sys., 9 (2003), 633.  doi: 10.3934/dcds.2003.9.633.  Google Scholar

[20]

T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface,, Asymptotic Analysis, 51 (2007), 17.   Google Scholar

[21]

L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system,, IMA J. Appl. Math., 75 (2010), 881.  doi: 10.1093/imamat/hxq038.  Google Scholar

[22]

B. Kellogg, Properties of solutions of elliptic boundary value problems,, in, (1972), 47.   Google Scholar

[23]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation,, J. Diff. Eqns., 50 (1983), 163.  doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[24]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators,, J. Math. Pures et Appl., 65 (1986), 149.   Google Scholar

[25]

I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control,, Appl. Math. Optimiz., 19 (1986), 243.   Google Scholar

[26]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions,, Appl. Math. Optim., 25 (1992), 189.  doi: 10.1007/BF01182480.  Google Scholar

[27]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. I,", Cambridge University Press, (2000).   Google Scholar

[28]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. II,", Cambridge University Press, (2000).   Google Scholar

[29]

I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type, Part I: The $ L_2 $ boundary case ,, Annali Matem. Pura e Applicata, (1990), 285.   Google Scholar

[30]

I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli equations ,, Applied Math. Optimization, (1993), 277.   Google Scholar

[31]

I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions ,, Rocky Mountain. J.Math., (2000), 981.   Google Scholar

[32]

N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach,, Special issue on the mathematical foundations of system theory, 25 (1978), 721.  doi: 10.1109/TCS.1978.1084539.  Google Scholar

[33]

J.-L. Lions, "Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires,", Dunod; Gauthier-Villars, (1969).   Google Scholar

[34]

J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Vol. I,", Die Grundlehren der mathematischen Wissenschaften, (1972).   Google Scholar

[35]

Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach space,, Stud. Math., 88 (1988), 37.   Google Scholar

[36]

J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping,, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97.   Google Scholar

[37]

, J. M. Rivera,, private communication, (2012).   Google Scholar

[38]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory,, JMAA, 326 (2007), 691.  doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[39]

J. E. Muñoz Rivera, M. G. Naso and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory,, JMAA, 286 (2003), 692.  doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[40]

D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions,, SIAM Review, 20 (1978), 639.  doi: 10.1137/1020095.  Google Scholar

[41]

H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach,", Birkhäuser Advanced Texts: Basler Lehrbücher, (2001).  doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[42]

R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems,, in, 6 (1978), 380.   Google Scholar

[43]

R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems,, Appl. Math. Optimiz., 18 (1988), 241.  doi: 10.1007/BF01443625.  Google Scholar

[44]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach,, J. Math. Anal. Appl., 137 (1989), 438.  doi: 10.1016/0022-247X(89)90255-2.  Google Scholar

[45]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction,, Arch. Rat. Mech. Anal., 184 (2007), 49.  doi: 10.1007/s00205-006-0020-x.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[17]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[18]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]