June  2013, 2(2): 233-253. doi: 10.3934/eect.2013.2.233

Rational decay rates for a PDE heat--structure interaction: A frequency domain approach

1. 

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588, United States

2. 

Department of Mathematics, University of Virginia, Charlottesville, VA 22903

Received  December 2012 Revised  February 2013 Published  March 2013

In this paper, we consider a simplified version of a fluid--structure PDE model ---in fact, a heat--structure interaction PDE-model. It is intended to be a first step toward a more realistic fluid--structure PDE model which has been of longstanding interest within the mathematical and biological sciences [33, p. 121], [17], [19]. This physically more sound and mathematically more challenging model will be treated in [13]. The simplified model replaces the linear dynamic Stokes equation with a linear $n$-dimensional heat equation (heat--structure interaction). The entire dynamics manifests both hyperbolic and parabolic features. Our main result is as follows: Given smooth initial data---i.e., data in the domain of the associated semigroup generator---the corresponding solutions decay at the rate $o( t^{-\frac{1}{2}}) $ (see Theorem 1.3 below). The basis of our proof is the recently derived resolvent criterion in [15]. In order to apply it, however, suitable PDE-estimates need to be established for each component by also making critical use of the interface conditions. A companion paper [6] will sharpen Lemma 5.8 of the present work by use of a lengthy and technical microlocal argument as in [26,29,30,31], to obtain the optimal value $\alpha =1$; hence, the optimal decay rate $o(t^{-1})$. See Remarks 1.2,1.3.
Citation: George Avalos, Roberto Triggiani. Rational decay rates for a PDE heat--structure interaction: A frequency domain approach. Evolution Equations & Control Theory, 2013, 2 (2) : 233-253. doi: 10.3934/eect.2013.2.233
References:
[1]

F. Abdullah, D. Mercier, and S. Nicaise, Spectral analysis and exponential or polynomial stability and exponential or polynomial stability of some indefinite sign damped problems, preprint, (2012). Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852. doi: 10.2307/2000826.  Google Scholar

[3]

G. Avalos, The strong stability and instability of a fluid-structure semigroup, Appl. Math. Optimiz., 55 (2007), 163-184. doi: 10.1007/s00245-006-0884-z.  Google Scholar

[4]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Applicationes Mathematicae, 35 (2008), 259-280. doi: 10.4064/am35-3-2.  Google Scholar

[5]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, special issue of Georgian Math. J., dedicated to the memory of J. L. Lions, 15 (2008), 403-437.  Google Scholar

[6]

G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface, (2012). Google Scholar

[7]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties, in "Fluids and Waves," Contemp. Math., 440, Amer. Math. Soc., Providence, RI, (2007), 15-54. doi: 10.1090/conm/440/08475.  Google Scholar

[8]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. Cont. Dynam. Sys., 22 (2008), 817-835. doi: 10.3934/dcds.2008.22.817.  Google Scholar

[9]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction, J. Diff. Eqns., 245 (2008), 737-761. doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[10]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discr. Cont. Dynam. Sys., 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417.  Google Scholar

[11]

G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis, Applicable Analysis, 88 (2009), 1357-1396. doi: 10.1080/00036810903278513.  Google Scholar

[12]

G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370. doi: 10.1007/s00028-009-0015-9.  Google Scholar

[13]

G. Avalos and R. Triggiani, Rational decay rates for a fluid-structure interaction model via a resolvent-based approach, (2013). Google Scholar

[14]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions, in "Fluids and Waves," Contemp. Math., 440, Amer. Math. Soc., Providence, RI, (2007), 55-82. Google Scholar

[15]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.  Google Scholar

[16]

K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups, Stud. Sci. Math. Hung., 30 (1995), 162-182.  Google Scholar

[17]

H. Cohen and S. I. Rubinow, "Some Mathematical Topics in Biology," Proc. Symp. on System Theory, Polytechnic Press, New York, (1965), 321-337. Google Scholar

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago Lectures in Mathematics, The University of Chicago Press, Chicago IL, 1988.  Google Scholar

[19]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. Contin. Dynam. Sys., 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633.  Google Scholar

[20]

T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface, Asymptotic Analysis, 51 (2007), 17-45.  Google Scholar

[21]

L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904. doi: 10.1093/imamat/hxq038.  Google Scholar

[22]

B. Kellogg, Properties of solutions of elliptic boundary value problems, in "The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations" (ed. A. K. Aziz), Academic Press, New York, (1972), 47-81. Google Scholar

[23]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Diff. Eqns., 50 (1983), 163-182. doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[24]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures et Appl., 65 (1986), 149-192.  Google Scholar

[25]

I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control, Appl. Math. Optimiz., 19 (1986), 243-290; preliminary version in Springer Verlag Lecture Notes, 100 (1987), 316-371. Google Scholar

[26]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224. doi: 10.1007/BF01182480.  Google Scholar

[27]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. I," Cambridge University Press, New York, 2000.  Google Scholar

[28]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. II," Cambridge University Press, New York, 2000.  Google Scholar

[29]

I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type, Part I: The $ L_2 $ boundary case , Annali Matem. Pura e Applicata, (IV) CLVII (1990), 285-367.  Google Scholar

[30]

I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli equations , Applied Math. Optimization , 28, (1993), 277-306.  Google Scholar

[31]

I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions , Rocky Mountain. J.Math., 30(3), (2000), 981-1023.  Google Scholar

[32]

N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach, Special issue on the mathematical foundations of system theory, IEEE Trans. Circuits & Sys., 25 (1978), 721-727. doi: 10.1109/TCS.1978.1084539.  Google Scholar

[33]

J.-L. Lions, "Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires," Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[34]

J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Vol. I," Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[35]

Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach space, Stud. Math., 88 (1988), 37-42.  Google Scholar

[36]

J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97-127.  Google Scholar

[37]

, J. M. Rivera,, private communication, (2012).   Google Scholar

[38]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, JMAA, 326 (2007), 691-707. doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[39]

J. E. Muñoz Rivera, M. G. Naso and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, JMAA, 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[40]

D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639-739. doi: 10.1137/1020095.  Google Scholar

[41]

H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[42]

R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems, in "Optimization Techniques" (Proc. 8th IFIP Conf., Würzburg, 1977), Part 1, Lecture Notes in Control and Information Sciences, 6, Springer, Berlin, (1978), 380-390.  Google Scholar

[43]

R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems, Appl. Math. Optimiz., 18 (1988), 241-277; preliminary version in Springer-Verlag Lecture Notes, 102 (1987), 291-332; Proceedings of Workshop on Control for Distributed Parameter Systems, University of Graz, Austria, July 1986. doi: 10.1007/BF01443625.  Google Scholar

[44]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, J. Math. Anal. Appl., 137 (1989), 438-461. doi: 10.1016/0022-247X(89)90255-2.  Google Scholar

[45]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction, Arch. Rat. Mech. Anal., 184 (2007), 49-120. doi: 10.1007/s00205-006-0020-x.  Google Scholar

show all references

References:
[1]

F. Abdullah, D. Mercier, and S. Nicaise, Spectral analysis and exponential or polynomial stability and exponential or polynomial stability of some indefinite sign damped problems, preprint, (2012). Google Scholar

[2]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837-852. doi: 10.2307/2000826.  Google Scholar

[3]

G. Avalos, The strong stability and instability of a fluid-structure semigroup, Appl. Math. Optimiz., 55 (2007), 163-184. doi: 10.1007/s00245-006-0884-z.  Google Scholar

[4]

G. Avalos and M. Dvorak, A new maximality argument for a coupled fluid-structure interaction, with implications for a divergence-free finite element method, Applicationes Mathematicae, 35 (2008), 259-280. doi: 10.4064/am35-3-2.  Google Scholar

[5]

G. Avalos, I. Lasiecka and R. Triggiani, Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system, special issue of Georgian Math. J., dedicated to the memory of J. L. Lions, 15 (2008), 403-437.  Google Scholar

[6]

G. Avalos, I. Lasiecka and R. Triggiani, Optimal rational decay of a parabolic-hyperbolic system with boundary interface, (2012). Google Scholar

[7]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, Part I: Explicit semigroup generator and its spectral properties, in "Fluids and Waves," Contemp. Math., 440, Amer. Math. Soc., Providence, RI, (2007), 15-54. doi: 10.1090/conm/440/08475.  Google Scholar

[8]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discr. Cont. Dynam. Sys., 22 (2008), 817-835. doi: 10.3934/dcds.2008.22.817.  Google Scholar

[9]

G. Avalos and R. Triggiani, Backward uniqueness of the s.c. semigroup arising in parabolic-hyperbolic fluid-structure interaction, J. Diff. Eqns., 245 (2008), 737-761. doi: 10.1016/j.jde.2007.10.036.  Google Scholar

[10]

G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction, Discr. Cont. Dynam. Sys., 2 (2009), 417-447. doi: 10.3934/dcdss.2009.2.417.  Google Scholar

[11]

G. Avalos and R. Triggiani, Coupled parabolic-hyperbolic Stokes-Lamé PDE system: Limit behavior of the resolvent operator on the imaginary axis, Applicable Analysis, 88 (2009), 1357-1396. doi: 10.1080/00036810903278513.  Google Scholar

[12]

G. Avalos and R. Triggiani, Boundary feedback stabilization of a coupled parabolic-hyperbolic Stokes-Lamé PDE system, J. Evol. Eqns., 9 (2009), 341-370. doi: 10.1007/s00028-009-0015-9.  Google Scholar

[13]

G. Avalos and R. Triggiani, Rational decay rates for a fluid-structure interaction model via a resolvent-based approach, (2013). Google Scholar

[14]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Weak and strong solutions in nonlinear fluid-structure interactions, in "Fluids and Waves," Contemp. Math., 440, Amer. Math. Soc., Providence, RI, (2007), 55-82. Google Scholar

[15]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478. doi: 10.1007/s00208-009-0439-0.  Google Scholar

[16]

K. N. Boyadzhiev and N. Levan, Strong stability of Hilbert space contraction semigroups, Stud. Sci. Math. Hung., 30 (1995), 162-182.  Google Scholar

[17]

H. Cohen and S. I. Rubinow, "Some Mathematical Topics in Biology," Proc. Symp. on System Theory, Polytechnic Press, New York, (1965), 321-337. Google Scholar

[18]

P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago Lectures in Mathematics, The University of Chicago Press, Chicago IL, 1988.  Google Scholar

[19]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discr. Contin. Dynam. Sys., 9 (2003), 633-650. doi: 10.3934/dcds.2003.9.633.  Google Scholar

[20]

T. Duyckaerts, Optimal decay rates of the energy of a hyperbolic-parabolic system coupled by an interface, Asymptotic Analysis, 51 (2007), 17-45.  Google Scholar

[21]

L. Fatori and J. E. Muñoz Rivera, Rates of decay to weak thermoelastic Bresse system, IMA J. Appl. Math., 75 (2010), 881-904. doi: 10.1093/imamat/hxq038.  Google Scholar

[22]

B. Kellogg, Properties of solutions of elliptic boundary value problems, in "The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations" (ed. A. K. Aziz), Academic Press, New York, (1972), 47-81. Google Scholar

[23]

J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Diff. Eqns., 50 (1983), 163-182. doi: 10.1016/0022-0396(83)90073-6.  Google Scholar

[24]

I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second-order hyperbolic operators, J. Math. Pures et Appl., 65 (1986), 149-192.  Google Scholar

[25]

I. Lasiecka and R. Triggiani, Exact boundary controllability for the wave equation with Neumann boundary control, Appl. Math. Optimiz., 19 (1986), 243-290; preliminary version in Springer Verlag Lecture Notes, 100 (1987), 316-371. Google Scholar

[26]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224. doi: 10.1007/BF01182480.  Google Scholar

[27]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. I," Cambridge University Press, New York, 2000.  Google Scholar

[28]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations, Vol. II," Cambridge University Press, New York, 2000.  Google Scholar

[29]

I. Lasiecka and R. Triggiani, Sharp regularity for mixed second order hyperbolic equations of Neumann type, Part I: The $ L_2 $ boundary case , Annali Matem. Pura e Applicata, (IV) CLVII (1990), 285-367.  Google Scholar

[30]

I. Lasiecka and R. Triggiani, Sharp trace estimates of solutions to Kirchhoff and Euler Bernoulli equations , Applied Math. Optimization , 28, (1993), 277-306.  Google Scholar

[31]

I. Lasiecka and R. Triggiani, A sharp trace regularity result of Kirchhoff and thermoelastic plate equations with free boundary conditions , Rocky Mountain. J.Math., 30(3), (2000), 981-1023.  Google Scholar

[32]

N. Levan, The stabilizability problem: A Hilbert space operator decomposition approach, Special issue on the mathematical foundations of system theory, IEEE Trans. Circuits & Sys., 25 (1978), 721-727. doi: 10.1109/TCS.1978.1084539.  Google Scholar

[33]

J.-L. Lions, "Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires," Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[34]

J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications, Vol. I," Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[35]

Y. I. Lyubich and V. Q. Phóng, Asymptotic stability of linear differential equations in Banach space, Stud. Math., 88 (1988), 37-42.  Google Scholar

[36]

J. P. Quinn and D. L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh Sect. A, 77 (1977), 97-127.  Google Scholar

[37]

, J. M. Rivera,, private communication, (2012).   Google Scholar

[38]

J. E. Muñoz Rivera and M. G. Naso, Asymptotic stability of semigroups associated with linear weak dissipative systems with memory, JMAA, 326 (2007), 691-707. doi: 10.1016/j.jmaa.2006.03.022.  Google Scholar

[39]

J. E. Muñoz Rivera, M. G. Naso and F. Vagni, Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory, JMAA, 286 (2003), 692-704. doi: 10.1016/S0022-247X(03)00511-0.  Google Scholar

[40]

D. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Review, 20 (1978), 639-739. doi: 10.1137/1020095.  Google Scholar

[41]

H. Sohr, "The Navier-Stokes Equations. An Elementary Functional Analytic Approach," Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[42]

R. Triggiani, A cosine operator approach to modeling boundary input problems for hyperbolic systems, in "Optimization Techniques" (Proc. 8th IFIP Conf., Würzburg, 1977), Part 1, Lecture Notes in Control and Information Sciences, 6, Springer, Berlin, (1978), 380-390.  Google Scholar

[43]

R. Triggiani, Exact boundary controllability of $L_2(\Omega) \times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary and related problems, Appl. Math. Optimiz., 18 (1988), 241-277; preliminary version in Springer-Verlag Lecture Notes, 102 (1987), 291-332; Proceedings of Workshop on Control for Distributed Parameter Systems, University of Graz, Austria, July 1986. doi: 10.1007/BF01443625.  Google Scholar

[44]

R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, J. Math. Anal. Appl., 137 (1989), 438-461. doi: 10.1016/0022-247X(89)90255-2.  Google Scholar

[45]

X. Zhang and E. Zuazua, Long-time behavior of a coupled heat-wave system in fluid-structure interaction, Arch. Rat. Mech. Anal., 184 (2007), 49-120. doi: 10.1007/s00205-006-0020-x.  Google Scholar

[1]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[2]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[3]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[4]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[5]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[6]

Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269

[7]

George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3-D fluid-structure interaction. Evolution Equations & Control Theory, 2014, 3 (4) : 557-578. doi: 10.3934/eect.2014.3.557

[8]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[9]

Gilbert Peralta. Uniform exponential stability of a fluid-plate interaction model due to thermal effects. Evolution Equations & Control Theory, 2020, 9 (1) : 39-60. doi: 10.3934/eect.2020016

[10]

Jiahui Zhu, Zdzisław Brzeźniak. Nonlinear stochastic partial differential equations of hyperbolic type driven by Lévy-type noises. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3269-3299. doi: 10.3934/dcdsb.2016097

[11]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[12]

Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037

[13]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[14]

Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure & Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211

[15]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[16]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[17]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[18]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1133-1148. doi: 10.3934/dcdss.2014.7.1133

[19]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[20]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]